lihachev9's picture
Update README.md
5e3a301
|
raw
history blame
3.56 kB
---
language:
- ru
- en
- fr
- it
- pt
tags:
- formal or informal classification
licenses:
- cc-by-nc-sa
---
XLMRoberta-based classifier trained on XFORMAL and add Russian.
all
| | precision | recall | f1-score | support |
|--------------|-----------|----------|----------|---------|
| 0 | 0.744912 | 0.927790 | 0.826354 | 108019 |
| 1 | 0.889088 | 0.645630 | 0.748048 | 96845 |
| accuracy | | | 0.794405 | 204864 |
| macro avg | 0.817000 | 0.786710 | 0.787201 | 204864 |
| weighted avg | 0.813068 | 0.794405 | 0.789337 | 204864 |
en
| | precision | recall | f1-score | support |
|--------------|-----------|----------|----------|---------|
| 0 | 0.800053 | 0.962981 | 0.873988 | 22151 |
| 1 | 0.945106 | 0.725899 | 0.821124 | 19449 |
| accuracy | | | 0.852139 | 41600 |
| macro avg | 0.872579 | 0.844440 | 0.847556 | 41600 |
| weighted avg | 0.867869 | 0.852139 | 0.849273 | 41600 |
fr
| | precision | recall | f1-score | support |
|--------------|-----------|----------|----------|---------|
| 0 | 0.746709 | 0.925738 | 0.826641 | 21505 |
| 1 | 0.887305 | 0.650592 | 0.750731 | 19327 |
| accuracy | | | 0.795504 | 40832 |
| macro avg | 0.817007 | 0.788165 | 0.788686 | 40832 |
| weighted avg | 0.813257 | 0.795504 | 0.790711 | 40832 |
it
| | precision | recall | f1-score | support |
|--------------|-----------|----------|----------|---------|
| 0 | 0.721282 | 0.914669 | 0.806545 | 21528 |
| 1 | 0.864887 | 0.607135 | 0.713445 | 19368 |
| accuracy | | | 0.769024 | 40896 |
| macro avg | 0.793084 | 0.760902 | 0.759995 | 40896 |
| weighted avg | 0.789292 | 0.769024 | 0.762454 | 40896 |
pt
| | precision | recall | f1-score | support |
|--------------|-----------|----------|----------|---------|
| 0 | 0.717546 | 0.908167 | 0.801681 | 21637 |
| 1 | 0.853628 | 0.599700 | 0.704481 | 19323 |
| accuracy | | | 0.762646 | 40960 |
| macro avg | 0.785587 | 0.753933 | 0.753081 | 40960 |
| weighted avg | 0.781743 | 0.762646 | 0.755826 | 40960 |
ru
| | precision | recall | f1-score | support |
|--------------|-----------|----------|----------|---------|
| 0 | 0.741333 | 0.926500 | 0.823638 | 21211 |
| 1 | 0.888667 | 0.644733 | 0.747298 | 19301 |
| accuracy | | | 0.792259 | 40512 |
| macro avg | 0.815000 | 0.785617 | 0.785468 | 40512 |
| weighted avg | 0.811527 | 0.792259 | 0.787267 | 40512 |
## How to use
```python
from transformers import XLMRobertaTokenizerFast, XLMRobertaForSequenceClassification
# load tokenizer and model weights
tokenizer = XLMRobertaTokenizerFast.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier')
model = XLMRobertaForSequenceClassification.from_pretrained('SkolkovoInstitute/xlmr_formality_classifier')
# prepare the input
batch = tokenizer.encode('ты супер', return_tensors='pt')
# inference
model(batch)
```
## Licensing Information
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].
[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
[cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png