segformer-b0-finetuned-segments-SixrayGun8-14-2024

This model is a fine-tuned version of nvidia/mit-b0 on the saad7489/SIXray_Gun dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1155
  • Mean Iou: 0.1748
  • Mean Accuracy: 0.2486
  • Overall Accuracy: 0.5704
  • Accuracy No-label: nan
  • Accuracy Object1: 0.6638
  • Accuracy Object2: 0.5791
  • Accuracy Object3: 0.0
  • Accuracy Object4: 0.0
  • Accuracy Object5: 0.0
  • Accuracy Object6: nan
  • Iou No-label: 0.0
  • Iou Object1: 0.5674
  • Iou Object2: 0.4817
  • Iou Object3: 0.0
  • Iou Object4: 0.0
  • Iou Object5: 0.0
  • Iou Object6: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy No-label Accuracy Object1 Accuracy Object2 Accuracy Object3 Accuracy Object4 Accuracy Object5 Accuracy Object6 Iou No-label Iou Object1 Iou Object2 Iou Object3 Iou Object4 Iou Object5 Iou Object6
1.5955 0.5128 20 1.7043 0.0922 0.1760 0.4766 nan 0.6799 0.1943 0.0058 0.0 0.0 nan 0.0 0.4999 0.1400 0.0058 0.0 0.0 0.0
1.2095 1.0256 40 1.2385 0.0865 0.1398 0.4206 nan 0.6565 0.0425 0.0 0.0 0.0 nan 0.0 0.4787 0.0403 0.0 0.0 0.0 nan
1.0262 1.5385 60 1.0043 0.0795 0.1256 0.3824 nan 0.6026 0.0256 0.0 0.0 0.0 nan 0.0 0.4521 0.0250 0.0 0.0 0.0 nan
0.935 2.0513 80 0.8920 0.0771 0.1201 0.3655 nan 0.5759 0.0245 0.0 0.0 0.0 nan 0.0 0.4386 0.0240 0.0 0.0 0.0 nan
0.8168 2.5641 100 0.8136 0.0691 0.1079 0.3359 nan 0.5386 0.0011 0.0 0.0 0.0 nan 0.0 0.4137 0.0011 0.0 0.0 0.0 nan
0.721 3.0769 120 0.7429 0.0758 0.1222 0.3803 nan 0.6100 0.0009 0.0 0.0 0.0 nan 0.0 0.4538 0.0009 0.0 0.0 0.0 nan
0.6536 3.5897 140 0.6914 0.0828 0.1378 0.4292 nan 0.6886 0.0003 0.0 0.0 0.0 nan 0.0 0.4965 0.0003 0.0 0.0 0.0 nan
0.6535 4.1026 160 0.5916 0.0691 0.1091 0.3398 nan 0.5454 0.0000 0.0 0.0 0.0 nan 0.0 0.4147 0.0000 0.0 0.0 0.0 nan
0.5396 4.6154 180 0.5436 0.0780 0.1283 0.3996 nan 0.6409 0.0007 0.0 0.0 0.0 nan 0.0 0.4674 0.0007 0.0 0.0 0.0 nan
0.4738 5.1282 200 0.4589 0.0777 0.1275 0.3973 nan 0.6376 0.0000 0.0 0.0 0.0 nan 0.0 0.4664 0.0000 0.0 0.0 0.0 nan
0.4548 5.6410 220 0.3964 0.0739 0.1182 0.3679 nan 0.5902 0.0007 0.0 0.0 0.0 nan 0.0 0.4426 0.0007 0.0 0.0 0.0 nan
0.3918 6.1538 240 0.4124 0.0895 0.1507 0.4629 nan 0.7348 0.0185 0.0 0.0 0.0 nan 0.0 0.5187 0.0183 0.0 0.0 0.0 nan
0.3569 6.6667 260 0.3519 0.0859 0.1465 0.4560 nan 0.7314 0.0010 0.0 0.0 0.0 nan 0.0 0.5144 0.0010 0.0 0.0 0.0 nan
0.3143 7.1795 280 0.3189 0.0860 0.1464 0.4562 nan 0.7322 0.0 0.0 0.0 0.0 nan 0.0 0.5158 0.0 0.0 0.0 0.0 nan
0.3131 7.6923 300 0.3064 0.0940 0.1601 0.4880 nan 0.7698 0.0306 0.0 0.0 0.0 nan 0.0 0.5339 0.0302 0.0 0.0 0.0 nan
0.2623 8.2051 320 0.2687 0.0827 0.1392 0.4337 nan 0.6960 0.0001 0.0 0.0 0.0 nan 0.0 0.4961 0.0001 0.0 0.0 0.0 nan
0.2205 8.7179 340 0.2293 0.0838 0.1377 0.4232 nan 0.6722 0.0162 0.0 0.0 0.0 nan 0.0 0.4865 0.0161 0.0 0.0 0.0 nan
0.2316 9.2308 360 0.2277 0.0865 0.1445 0.4444 nan 0.7062 0.0160 0.0 0.0 0.0 nan 0.0 0.5032 0.0160 0.0 0.0 0.0 nan
0.2626 9.7436 380 0.2061 0.0936 0.1452 0.4223 nan 0.6405 0.0856 0.0 0.0 0.0 nan 0.0 0.4777 0.0836 0.0 0.0 0.0 nan
0.1835 10.2564 400 0.1938 0.1100 0.1683 0.4696 nan 0.6863 0.1551 0.0 0.0 0.0 nan 0.0 0.5108 0.1491 0.0 0.0 0.0 nan
0.2101 10.7692 420 0.1763 0.1127 0.1703 0.4652 nan 0.6659 0.1858 0.0 0.0 0.0 nan 0.0 0.5027 0.1732 0.0 0.0 0.0 nan
0.173 11.2821 440 0.1608 0.1284 0.1867 0.4838 nan 0.6555 0.2783 0.0 0.0 0.0 nan 0.0 0.5130 0.2576 0.0 0.0 0.0 nan
0.1614 11.7949 460 0.1650 0.1464 0.2140 0.5146 nan 0.6384 0.4316 0.0 0.0 0.0 nan 0.0 0.5170 0.3616 0.0 0.0 0.0 nan
0.1575 12.3077 480 0.1562 0.1489 0.2184 0.5282 nan 0.6601 0.4318 0.0 0.0 0.0 nan 0.0 0.5311 0.3622 0.0 0.0 0.0 nan
0.1681 12.8205 500 0.1562 0.1657 0.2429 0.5762 nan 0.7023 0.5121 0.0 0.0 0.0 nan 0.0 0.5699 0.4241 0.0 0.0 0.0 nan
0.1325 13.3333 520 0.1430 0.1585 0.2268 0.5429 nan 0.6693 0.4649 0.0 0.0 0.0 nan 0.0 0.5489 0.4024 0.0 0.0 0.0 nan
0.1414 13.8462 540 0.1283 0.1519 0.2156 0.5188 nan 0.6441 0.4336 0.0 0.0 0.0 nan 0.0 0.5311 0.3801 0.0 0.0 0.0 nan
0.1276 14.3590 560 0.1296 0.1399 0.1953 0.4706 nan 0.5855 0.3909 0.0 0.0 0.0 nan 0.0 0.4895 0.3501 0.0 0.0 0.0 nan
0.1384 14.8718 580 0.1291 0.1526 0.2160 0.5212 nan 0.6493 0.4307 0.0 0.0 0.0 nan 0.0 0.5334 0.3819 0.0 0.0 0.0 nan
0.1546 15.3846 600 0.1294 0.1692 0.2438 0.5627 nan 0.6604 0.5587 0.0 0.0 0.0 nan 0.0 0.5584 0.4571 0.0 0.0 0.0 nan
0.1308 15.8974 620 0.1219 0.1625 0.2305 0.5490 nan 0.6725 0.4798 0.0 0.0 0.0 nan 0.0 0.5564 0.4189 0.0 0.0 0.0 nan
0.1365 16.4103 640 0.1241 0.1686 0.2469 0.5603 nan 0.6418 0.5925 0.0 0.0 0.0 nan 0.0 0.5478 0.4640 0.0 0.0 0.0 nan
0.1361 16.9231 660 0.1191 0.1590 0.2255 0.5385 nan 0.6620 0.4653 0.0 0.0 0.0 nan 0.0 0.5464 0.4074 0.0 0.0 0.0 nan
0.1125 17.4359 680 0.1168 0.1693 0.2397 0.5549 nan 0.6537 0.5451 0.0 0.0 0.0 nan 0.0 0.5570 0.4589 0.0 0.0 0.0 nan
0.1134 17.9487 700 0.1182 0.1732 0.2470 0.5725 nan 0.6758 0.5592 0.0 0.0 0.0 nan 0.0 0.5705 0.4689 0.0 0.0 0.0 nan
0.1351 18.4615 720 0.1168 0.1751 0.2496 0.5698 nan 0.6580 0.5901 0.0 0.0 0.0 nan 0.0 0.5648 0.4859 0.0 0.0 0.0 nan
0.1382 18.9744 740 0.1177 0.1771 0.2530 0.5784 nan 0.6694 0.5956 0.0 0.0 0.0 nan 0.0 0.5724 0.4904 0.0 0.0 0.0 nan
0.1113 19.4872 760 0.1164 0.1789 0.2562 0.5859 nan 0.6784 0.6026 0.0 0.0 0.0 nan 0.0 0.5791 0.4943 0.0 0.0 0.0 nan
0.098 20.0 780 0.1155 0.1748 0.2486 0.5704 nan 0.6638 0.5791 0.0 0.0 0.0 nan 0.0 0.5674 0.4817 0.0 0.0 0.0 nan

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for saad7489/segformer-b0-finetuned-segments-SixrayGun8-14-2024

Base model

nvidia/mit-b0
Finetuned
(335)
this model