saad7489's picture
End of training
6ab99ca verified
|
raw
history blame
3.22 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024
    results: []

segformer-b0-finetuned-segments-SixrayKnife8-19-2024

This model is a fine-tuned version of nvidia/mit-b0 on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5986
  • Mean Iou: 0.5110
  • Mean Accuracy: 0.8118
  • Overall Accuracy: 0.8081
  • Accuracy Object1: nan
  • Accuracy Object2: 0.7529
  • Accuracy Object3: 0.8707
  • Iou Object1: 0.0
  • Iou Object2: 0.7267
  • Iou Object3: 0.8065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Object1 Accuracy Object2 Accuracy Object3 Iou Object1 Iou Object2 Iou Object3
0.7244 1.4286 20 0.6924 0.4978 0.8311 0.8263 nan 0.7536 0.9087 0.0 0.7153 0.7782
0.7251 2.8571 40 0.6470 0.5105 0.8256 0.8213 nan 0.7572 0.8940 0.0 0.7246 0.8069
0.6558 4.2857 60 0.6246 0.5148 0.8243 0.8210 nan 0.7714 0.8772 0.0 0.7350 0.8095
0.6463 5.7143 80 0.5954 0.5100 0.8126 0.8098 nan 0.7680 0.8572 0.0 0.7295 0.8004
0.63 7.1429 100 0.5892 0.5082 0.8073 0.8043 nan 0.7582 0.8564 0.0 0.7254 0.7991
0.5935 8.5714 120 0.5923 0.5134 0.8155 0.8127 nan 0.7694 0.8616 0.0 0.7369 0.8031
0.6137 10.0 140 0.5986 0.5110 0.8118 0.8081 nan 0.7529 0.8707 0.0 0.7267 0.8065

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1