metadata
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024
results: []
segformer-b0-finetuned-segments-SixrayKnife8-19-2024
This model is a fine-tuned version of nvidia/mit-b0 on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set:
- Loss: 0.5986
- Mean Iou: 0.5110
- Mean Accuracy: 0.8118
- Overall Accuracy: 0.8081
- Accuracy Object1: nan
- Accuracy Object2: 0.7529
- Accuracy Object3: 0.8707
- Iou Object1: 0.0
- Iou Object2: 0.7267
- Iou Object3: 0.8065
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Object1 | Accuracy Object2 | Accuracy Object3 | Iou Object1 | Iou Object2 | Iou Object3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.7244 | 1.4286 | 20 | 0.6924 | 0.4978 | 0.8311 | 0.8263 | nan | 0.7536 | 0.9087 | 0.0 | 0.7153 | 0.7782 |
0.7251 | 2.8571 | 40 | 0.6470 | 0.5105 | 0.8256 | 0.8213 | nan | 0.7572 | 0.8940 | 0.0 | 0.7246 | 0.8069 |
0.6558 | 4.2857 | 60 | 0.6246 | 0.5148 | 0.8243 | 0.8210 | nan | 0.7714 | 0.8772 | 0.0 | 0.7350 | 0.8095 |
0.6463 | 5.7143 | 80 | 0.5954 | 0.5100 | 0.8126 | 0.8098 | nan | 0.7680 | 0.8572 | 0.0 | 0.7295 | 0.8004 |
0.63 | 7.1429 | 100 | 0.5892 | 0.5082 | 0.8073 | 0.8043 | nan | 0.7582 | 0.8564 | 0.0 | 0.7254 | 0.7991 |
0.5935 | 8.5714 | 120 | 0.5923 | 0.5134 | 0.8155 | 0.8127 | nan | 0.7694 | 0.8616 | 0.0 | 0.7369 | 0.8031 |
0.6137 | 10.0 | 140 | 0.5986 | 0.5110 | 0.8118 | 0.8081 | nan | 0.7529 | 0.8707 | 0.0 | 0.7267 | 0.8065 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1