saad7489's picture
End of training
f8af36b verified
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-segments-SixrayKnife8-19-2024
    results: []

segformer-b0-finetuned-segments-SixrayKnife8-19-2024

This model is a fine-tuned version of nvidia/mit-b0 on the saad7489/SixraygunTest dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1817
  • Mean Iou: 0.8160
  • Mean Accuracy: 0.8823
  • Overall Accuracy: 0.9881
  • Accuracy Bkg: 0.9954
  • Accuracy Gun: 0.7759
  • Accuracy Knife: 0.8755
  • Iou Bkg: 0.9890
  • Iou Gun: 0.7014
  • Iou Knife: 0.7574

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Bkg Accuracy Gun Accuracy Knife Iou Bkg Iou Gun Iou Knife
0.4406 5.0 20 0.4093 0.7210 0.7883 0.9804 0.9938 0.6719 0.6991 0.9807 0.5730 0.6092
0.3699 10.0 40 0.3327 0.7327 0.7880 0.9819 0.9954 0.6559 0.7128 0.9824 0.5724 0.6432
0.31 15.0 60 0.3035 0.7698 0.8614 0.9842 0.9926 0.7207 0.8709 0.9853 0.6217 0.7023
0.2852 20.0 80 0.2649 0.7817 0.8711 0.9850 0.9928 0.7453 0.8752 0.9860 0.6423 0.7168
0.2583 25.0 100 0.2329 0.7936 0.8693 0.9863 0.9943 0.7497 0.8639 0.9873 0.6628 0.7307
0.2521 30.0 120 0.2194 0.7975 0.8778 0.9867 0.9942 0.7530 0.8862 0.9879 0.6731 0.7316
0.2357 35.0 140 0.2044 0.8042 0.8804 0.9871 0.9944 0.7635 0.8833 0.9881 0.6789 0.7456
0.2198 40.0 160 0.1929 0.8126 0.8789 0.9878 0.9953 0.7685 0.8728 0.9888 0.6937 0.7552
0.1909 45.0 180 0.1837 0.8151 0.8810 0.9880 0.9954 0.7726 0.8750 0.9890 0.6997 0.7568
0.1908 50.0 200 0.1817 0.8160 0.8823 0.9881 0.9954 0.7759 0.8755 0.9890 0.7014 0.7574

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1