verdict-classifier / README.md
saattrupdan's picture
update model card README.md
f7588be
|
raw
history blame
3.56 kB
metadata
license: mit
tags:
  - generated_from_trainer
model-index:
  - name: verdict-classifier
    results: []

verdict-classifier

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1573
  • F1 Macro: 0.0550
  • F1 Misinformation: 0.0
  • F1 Factual: 0.1650
  • F1 Other: 0.0
  • Prec Macro: 0.0300
  • Prec Misinformation: 0.0
  • Prec Factual: 0.0899
  • Prec Other: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 162525
  • num_epochs: 1000

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Misinformation F1 Factual F1 Other Prec Macro Prec Misinformation Prec Factual Prec Other
1.2021 0.0 50 1.1573 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1948 0.0 100 1.1569 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1968 0.01 150 1.1563 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1925 0.01 200 1.1554 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.2055 0.01 250 1.1544 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1927 0.01 300 1.1531 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1923 0.02 350 1.1515 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1929 0.02 400 1.1496 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1924 0.02 450 1.1476 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1862 0.02 500 1.1454 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0
1.1781 0.03 550 1.1432 0.0550 0.0 0.1650 0.0 0.0300 0.0 0.0899 0.0

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.0+cu102
  • Datasets 1.9.0
  • Tokenizers 0.10.2