SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sachin19566/bge-base-en-v1.5-course-recommender-v1")
# Run inference
sentences = [
    'ARIMA',
    'Learn how to apply seasonal analysis and ARIMA models and how to decompose and identify seasonal and non-seasonal factors all while learning the nuances of building sophisticated time series models.',
    'Prerequisites required: Intro to Time Series Analysis',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 183 training samples
  • Columns: name, description, prerequisites, and target_audience
  • Approximate statistics based on the first 183 samples:
    name description prerequisites target_audience
    type string string string string
    details
    • min: 3 tokens
    • mean: 7.06 tokens
    • max: 16 tokens
    • min: 13 tokens
    • mean: 40.5 tokens
    • max: 117 tokens
    • min: 10 tokens
    • mean: 13.19 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 23.2 tokens
    • max: 54 tokens
  • Samples:
    name description prerequisites target_audience
    Foundations of Big Data A theoretical course covering topics on how to handle data at scale and the different tools needed for distributed data storage, analysis, and management. Learners will be able to dive into the vast world of data and computing at scale and get a comprehensive overview of distributed computing. Prerequisites required: Optimizing Ensemble Methods Professionals who would like to learn the core concepts of big data and understand data at scale
    Big Data Orchestration & Workflow Management A theoretical course covering topics on how to handle data at scale and the different tools needed for orchestrating big data systems and manage the workflow. Learners will be able to dive into the vast world of data and computing at scale and get a comprehensive overview of the distributed resource management ecosystem. Prerequisites required: Foundations of Big Data Professionals who would like to learn the core concepts of distributed system orchestration and workflow management tools.
    Distributed Data Storage (Hadoop) A course that covers theory and implementation on a specific cloud platform covering topics on distributed data storage systems. Learners will be able to dive into the nature of storing and processing data at scale using tools like Hadoop on a selected cloud platform. This course will allow students to get a great foundation for creating and managing distributed data storage resources. Prerequisites required: Foundations of Big Data Professionals who have coding knowledge and want to learn to create a scalable data storage solution using cloud services.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 50 evaluation samples
  • Columns: name, description, prerequisites, and target_audience
  • Approximate statistics based on the first 50 samples:
    name description prerequisites target_audience
    type string string string string
    details
    • min: 4 tokens
    • mean: 6.96 tokens
    • max: 13 tokens
    • min: 15 tokens
    • mean: 43.96 tokens
    • max: 85 tokens
    • min: 10 tokens
    • mean: 12.92 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 23.28 tokens
    • max: 54 tokens
  • Samples:
    name description prerequisites target_audience
    Multiple Linear Regression This course covers a supervised regression technique called Multiple regression which is used to model a relationship between a certain number of features and a continuous target variable. Students will learn how this relationship is then used to predict changes in the target variable. The course includes the foundations of Multiple regression models, how to build, evaluate and interpret these models. Prerequisites required: Simple Linear Regression This is an introductory level course for data scientists who want to learn to understand and estimate relationships between a set of independent variables and a continuous dependent variable.
    Advanced Clustering in R This course covers the unsupervised learning method called clustering which is used to find patterns or groups in data without the need for labelled data. This course includes application of different methods of clustering on categorical or mixed data, equipping learners to build, evaluate, and interpret these models. Prerequisites required: Intermediate Clustering in R Professionals with some R experience who would like to expand their skillset to learn the core unsupervised learning techniques. Analysts with experience in another similar programming language who would like to learn core unsupervised learning frameworks and packages in R.
    Clustering in NLP This course covers the clustering concepts of natural language processing, equipping learners with the ability to cluster text data into groups and topics by finding similarities between different documents. Prerequisites required: Topic Modeling in NLP This is an intermediate level course for data scientists who have some experience with NLP and want to learn to cluster textual data.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 3e-06
  • max_steps: 64
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3.0
  • max_steps: 64
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
1.0833 20 1.4916 0.7430
2.1667 40 0.9815 0.5163
3.25 60 0.7923 0.4444

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
22
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sachin19566/bge-base-en-v1.5-course-recommender-v1

Finetuned
(310)
this model