metadata
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
metrics:
- rmse
library_name: pytorch
datasets:
- gvlassis/california_housing
pipeline_tag: tabular-regression
mlp-california-housing
A multi-layer perceptron (MLP) trained on the California Housing dataset.
It takes eight inputs: 'MedInc'
, 'HouseAge'
, 'AveRooms'
, 'AveBedrms'
, 'Population'
, 'AveOccup'
, 'Latitude'
and 'Longitude'
. It predicts 'MedHouseVal'
.
It is a PyTorch adaptation of the TensorFlow model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'.
Experiment tracking: https://wandb.ai/sadhaklal/mlp-california-housing
Usage
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing(as_frame=True)
from sklearn.model_selection import train_test_split
X_train_full, X_test, y_train_full, y_test = train_test_split(housing['data'], housing['target'], test_size=0.25, random_state=42)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.25, random_state=42)
X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0)
X_train = (X_train - X_means) / X_stds
X_valid = (X_valid - X_means) / X_stds
X_test = (X_test - X_means) / X_stds
import torch
device = torch.device("cpu")
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
class MLP(nn.Module, PyTorchModelHubMixin):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(8, 50)
self.fc2 = nn.Linear(50, 50)
self.fc3 = nn.Linear(50, 50)
self.fc4 = nn.Linear(50, 1)
def forward(self, x):
act = torch.relu(self.fc1(x))
act = torch.relu(self.fc2(act))
act = torch.relu(self.fc3(act))
return self.fc4(act)
model = MLP.from_pretrained("sadhaklal/mlp-california-housing")
model.to(device)
model.eval()
# Let's predict on 3 unseen examples from the test set:
print(f"Ground truth housing prices: {y_test.values[:3]}")
x_new = torch.tensor(X_test.values[:3], dtype=torch.float32)
x_new = x_new.to(device)
with torch.no_grad():
preds = model(x_new)
print(f"Predicted housing prices: {preds.squeeze()}")
Metric
RMSE on the test set: 0.5502
This model has been pushed to the Hub using the PyTorchModelHubMixin integration.