|
--- |
|
tags: |
|
- pytorch_model_hub_mixin |
|
- model_hub_mixin |
|
datasets: |
|
- scikit-learn/iris |
|
metrics: |
|
- accuracy |
|
library_name: pytorch |
|
pipeline_tag: tabular-classification |
|
--- |
|
|
|
# mlp-iris |
|
|
|
A multi-layer perceptron (MLP) trained on the Iris dataset. |
|
|
|
It takes four inputs: 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm' and 'PetalWidthCm'. It predicts whether the species is 'Iris-setosa' / 'Iris-versicolor' / 'Iris-virginica'. |
|
|
|
It is a PyTorch adaptation of the scikit-learn model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'. Find the scikit-learn model here: https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb |
|
|
|
Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/mlp_iris.ipynb |
|
|
|
Experiment tracking: https://wandb.ai/sadhaklal/mlp-iris |
|
|
|
## Usage |
|
|
|
``` |
|
!pip install -q datasets |
|
|
|
from datasets import load_dataset |
|
|
|
iris = load_dataset("scikit-learn/iris") |
|
iris.set_format("pandas") |
|
iris_df = iris['train'][:] |
|
|
|
label2id = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2} |
|
iris_df['Species'] = [label2id[species] for species in iris_df['Species']] |
|
|
|
X = iris_df[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']].values |
|
y = iris_df['Species'].values |
|
|
|
from sklearn.model_selection import train_test_split |
|
|
|
X_train_full, X_test, y_train_full, y_test = train_test_split(X, y, test_size=0.1, stratify=y, random_state=42) |
|
X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.1, stratify=y_train_full, random_state=42) |
|
|
|
X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0) |
|
|
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
device = torch.device("cpu") |
|
|
|
class MLP(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self): |
|
super().__init__() |
|
self.fc1 = nn.Linear(4, 5) |
|
self.fc2 = nn.Linear(5, 3) |
|
|
|
def forward(self, x): |
|
act = torch.relu(self.fc1(x)) |
|
return self.fc2(act) |
|
|
|
model = MLP.from_pretrained("sadhaklal/mlp-iris") |
|
model.to(device) |
|
|
|
X_new = X_test[:2] # Contains data on 2 new flowers from the test set. |
|
X_new = ((X_new - X_means) / X_stds) # Normalize. |
|
X_new = torch.tensor(X_new, dtype=torch.float32) |
|
|
|
model.eval() |
|
X_new = X_new.to(device) |
|
with torch.no_grad(): |
|
logits = model(X_new) |
|
probas = torch.softmax(logits, dim=-1) |
|
confidences, preds = probas.max(dim=-1) |
|
|
|
print(f"Predicted classes: {preds}") |
|
print(f"Predicted confidences: {confidences}") |
|
``` |
|
|
|
## Metric |
|
|
|
Accuracy on the test set: 0.9333 |
|
|
|
--- |
|
|
|
This model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration. |