metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
model-index:
- name: whisper-small-yue-mdcc-1
results: []
whisper-small-yue-mdcc-1
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2556
- Cer: 13.0495
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.5014 | 1.05 | 100 | 0.3315 | 27.2477 |
0.1895 | 2.11 | 200 | 0.2321 | 16.3903 |
0.1272 | 3.16 | 300 | 0.2210 | 15.7561 |
0.0759 | 4.21 | 400 | 0.2191 | 14.2006 |
0.0363 | 5.26 | 500 | 0.2249 | 16.1079 |
0.02 | 6.32 | 600 | 0.2320 | 13.4516 |
0.0112 | 7.37 | 700 | 0.2398 | 13.0711 |
0.0062 | 8.42 | 800 | 0.2497 | 13.0902 |
0.0048 | 9.47 | 900 | 0.2556 | 13.0495 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2