File size: 2,073 Bytes
e5921ee 55b7785 e5921ee 9eb4fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
language:
- en
tags:
- vision-language
- phi
- llava
- clip
- qlora
- multimodal
license: mit
datasets:
- laion/instructional-image-caption-data
base_model: microsoft/phi-1_5
library_name: transformers
pipeline_tag: image-to-text
---
# LLaVA-Phi Model
This is a vision-language model based on Microsoft's Phi-1.5 architecture with CLIP for image processing capabilities.
## Model Description
- **Base Model**: Microsoft Phi-1.5
- **Vision Encoder**: CLIP ViT-B/32
- **Training**: QLoRA fine-tuning
- **Dataset**: Instruct 150K
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
import torch
from PIL import Image
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("sagar007/Lava_phi")
tokenizer = AutoTokenizer.from_pretrained("sagar007/Lava_phi")
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
# For text
def generate_text(prompt):
inputs = tokenizer(f"human: {prompt}\ngpt:", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# For images
def process_image_and_prompt(image_path, prompt):
image = Image.open(image_path)
image_tensor = processor(images=image, return_tensors="pt").pixel_values
inputs = tokenizer(f"human: <image>\n{prompt}\ngpt:", return_tensors="pt")
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
images=image_tensor,
max_new_tokens=128
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
```
## Training Details
- Trained using QLoRA (Quantized Low-Rank Adaptation)
- 4-bit quantization for efficiency
- Gradient checkpointing enabled
- Mixed precision training (bfloat16)
## License
MIT License
## Citation
```bibtex
@software{llava_phi_2024,
author = {sagar007},
title = {LLaVA-Phi: Vision-Language Model},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/sagar007/Lava_phi}
}
```
|