Model Description
Fine-tuning bert-base-uncased model for token-level binary grammatical error detection on English-FCE dataset provided by MultiGED-2023
Get Started with the Model
from transformers import AutoModelForTokenClassification, BertTokenizer
# Load the model
model = AutoModelForTokenClassification.from_pretrained("sahilnishad/BERT-GED-FCE-FT")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Function to perform inference
def infer(sentence):
inputs = tokenizer(sentence, return_tensors="pt", add_special_tokens=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.logits.argmax(-1)
# Example usage
print(infer("Your example sentence here"))
BibTeX:
@misc{sahilnishad_bert_ged_fce_ft,
author = {Sahil Nishad},
title = {Fine-tuned BERT Model for Grammatical Error Detection on the FCE Dataset},
year = {2024},
url = {https://huggingface.co/sahilnishad/BERT-GED-FCE-FT},
note = {Model available on HuggingFace Hub},
howpublished = {\url{https://huggingface.co/sahilnishad/BERT-GED-FCE-FT}},
}
- Downloads last month
- 178
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for sahilnishad/BERT-GED-FCE-FT
Base model
google-bert/bert-base-uncased