TBH.AI Vortex
Collection
SFT Models which is tuned on high quality dataset
•
2 items
•
Updated
TBH.AI Vortex is a highly refined reasoning model built upon saishshinde15/TBH.AI_Base_Reasoning
, further enhanced with high-quality, curated datasets that the base model lacked. This model is part of the Vortex Family, a series of four fine-tuned models designed for advanced reasoning, knowledge synthesis, and structured response generation.
Unlike typical reinforcement learning-based improvements, Supervised Fine-Tuning (SFT) was chosen to ensure greater control, stability, and alignment with human-preferred responses, making Vortex more reliable, interpretable, and useful across a wide range of tasks.
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "saishshinde15/TBH.AI_Vortex",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit
)
FastLanguageModel.for_inference(model)
instruction = """You are an advanced AI assistant. Provide answers in a clear, step-by-step manner."""""
messages = [
{"role": "system", "content": instruction},
{"role": "user", "content": "who made you?"}
]
# Apply chat template (without tokenization but adding a generation prompt)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Tokenize prompt properly for model input
inputs = tokenizer(prompt, return_tensors='pt', padding=True, truncation=True).to("cuda")
# Generate response
outputs = model.generate(**inputs, max_new_tokens=1500, num_return_sequences=1)
# Decode output correctly
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract assistant response safely
assistant_start = text.find("assistant")
if assistant_start != -1:
response = text[assistant_start + len("assistant"):].strip()
else:
response = text # Fallback: return full text if "assistant" is not found
print(response)
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load tokenizer and model
model_name = "saishshinde15/TBH.AI_Vortex"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Define the system instruction
instruction = """You are an advanced AI assistant. Provide answers in a clear, step-by-step manner."""
# Prepare input prompt using chat template
messages = [
{"role": "system", "content": instruction},
{"role": "user", "content": "Who made you?"}
]
# Format the prompt
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Tokenize input
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to(device)
# Generate response with proper sampling parameters
output_ids = model.generate(
**inputs,
max_new_tokens=1500,
temperature=0.8,
top_p=0.95,
do_sample=True,
)
# Decode output correctly
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Extract assistant response safely
assistant_start = response.find("assistant")
if assistant_start != -1:
response = response[assistant_start + len("assistant"):].strip()
print(response)
Base model
Qwen/Qwen2.5-3B