Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Visualize in Weights & Biases Visualize in Weights & Biases

vit-base-patch16-224-in21k-lora

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2921
  • Accuracy: 0.9156
  • Pca Pca Loss: 0.9831
  • Pca Pca Accuracy: 0.7675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Pca Loss Pca Accuracy
0.9578 0.9923 97 0.5051 0.8835 1.2093 0.7819
0.8358 1.9949 195 0.3846 0.896 0.9570 0.8018
0.7924 2.9974 293 0.3438 0.9043 0.9650 0.786
0.7915 4.0 391 0.3237 0.9082 0.9268 0.791
0.6216 4.9923 488 0.3115 0.9112 0.9928 0.771
0.8495 5.9949 586 0.3059 0.9111 0.9743 0.7741
0.7881 6.9974 684 0.2988 0.9139 0.9420 0.7776
0.711 8.0 782 0.2955 0.915 0.9829 0.7692
0.7158 8.9923 879 0.2929 0.9149 0.9825 0.7685
0.6983 9.9233 970 0.2921 0.9156 0.9831 0.7675

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
544
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sajjadi/vit-base-patch16-224-in21k-lora

Adapter
(83)
this model