|
from onmt.utils.logging import logger |
|
from onmt.transforms import register_transform |
|
from .transform import Transform, ObservableStats |
|
|
|
|
|
class FilterTooLongStats(ObservableStats): |
|
"""Runing statistics for FilterTooLongTransform.""" |
|
__slots__ = ["filtered"] |
|
|
|
def __init__(self): |
|
self.filtered = 1 |
|
|
|
def update(self, other: "FilterTooLongStats"): |
|
self.filtered += other.filtered |
|
|
|
|
|
@register_transform(name='filtertoolong') |
|
class FilterTooLongTransform(Transform): |
|
"""Filter out sentence that are too long.""" |
|
|
|
def __init__(self, opts): |
|
super().__init__(opts) |
|
|
|
@classmethod |
|
def add_options(cls, parser): |
|
"""Avalilable options relate to this Transform.""" |
|
group = parser.add_argument_group("Transform/Filter") |
|
group.add("--src_seq_length", "-src_seq_length", type=int, default=200, |
|
help="Maximum source sequence length.") |
|
group.add("--tgt_seq_length", "-tgt_seq_length", type=int, default=200, |
|
help="Maximum target sequence length.") |
|
|
|
def _parse_opts(self): |
|
self.src_seq_length = self.opts.src_seq_length |
|
self.tgt_seq_length = self.opts.tgt_seq_length |
|
|
|
def apply(self, example, is_train=False, stats=None, **kwargs): |
|
"""Return None if too long else return as is.""" |
|
if (len(example['src']) > self.src_seq_length or |
|
len(example['tgt']) > self.tgt_seq_length): |
|
if stats is not None: |
|
stats.update(FilterTooLongStats()) |
|
return None |
|
else: |
|
return example |
|
|
|
def _repr_args(self): |
|
"""Return str represent key arguments for class.""" |
|
return '{}={}, {}={}'.format( |
|
'src_seq_length', self.src_seq_length, |
|
'tgt_seq_length', self.tgt_seq_length |
|
) |
|
|
|
|
|
@register_transform(name='prefix') |
|
class PrefixTransform(Transform): |
|
"""Add Prefix to src (& tgt) sentence.""" |
|
|
|
def __init__(self, opts): |
|
super().__init__(opts) |
|
|
|
@staticmethod |
|
def _get_prefix(corpus): |
|
"""Get prefix string of a `corpus`.""" |
|
if 'prefix' in corpus['transforms']: |
|
prefix = { |
|
'src': corpus['src_prefix'], |
|
'tgt': corpus['tgt_prefix'] |
|
} |
|
else: |
|
prefix = None |
|
return prefix |
|
|
|
@classmethod |
|
def get_prefix_dict(cls, opts): |
|
"""Get all needed prefix correspond to corpus in `opts`.""" |
|
prefix_dict = {} |
|
for c_name, corpus in opts.data.items(): |
|
prefix = cls._get_prefix(corpus) |
|
if prefix is not None: |
|
logger.info(f"Get prefix for {c_name}: {prefix}") |
|
prefix_dict[c_name] = prefix |
|
return prefix_dict |
|
|
|
@classmethod |
|
def get_specials(cls, opts): |
|
"""Get special vocabs added by prefix transform.""" |
|
prefix_dict = cls.get_prefix_dict(opts) |
|
src_specials, tgt_specials = set(), set() |
|
for _, prefix in prefix_dict.items(): |
|
src_specials.update(prefix['src'].split()) |
|
tgt_specials.update(prefix['tgt'].split()) |
|
return (src_specials, tgt_specials) |
|
|
|
def warm_up(self, vocabs=None): |
|
"""Warm up to get prefix dictionary.""" |
|
super().warm_up(None) |
|
self.prefix_dict = self.get_prefix_dict(self.opts) |
|
|
|
def _prepend(self, example, prefix): |
|
"""Prepend `prefix` to `tokens`.""" |
|
for side, side_prefix in prefix.items(): |
|
example[side] = side_prefix.split() + example[side] |
|
return example |
|
|
|
def apply(self, example, is_train=False, stats=None, **kwargs): |
|
"""Apply prefix prepend to example. |
|
|
|
Should provide `corpus_name` to get correspond prefix. |
|
""" |
|
corpus_name = kwargs.get('corpus_name', None) |
|
if corpus_name is None: |
|
raise ValueError('corpus_name is required.') |
|
corpus_prefix = self.prefix_dict.get(corpus_name, None) |
|
if corpus_prefix is None: |
|
raise ValueError(f'prefix for {corpus_name} does not exist.') |
|
return self._prepend(example, corpus_prefix) |
|
|
|
def _repr_args(self): |
|
"""Return str represent key arguments for class.""" |
|
return '{}={}'.format('prefix_dict', self.prefix_dict) |
|
|