NMTKD / translation /OpenNMT-py /onmt /translate /translation_server.py
sakharamg's picture
Uploading all files
158b61b
#!/usr/bin/env python
"""REST Translation server."""
import codecs
import sys
import os
import time
import json
import threading
import re
import traceback
import importlib
import torch
import onmt.opts
from itertools import islice, zip_longest
from copy import deepcopy
from collections import defaultdict
from argparse import Namespace
from onmt.constants import DefaultTokens
from onmt.utils.logging import init_logger
from onmt.utils.misc import set_random_seed
from onmt.utils.misc import check_model_config
from onmt.utils.alignment import to_word_align
from onmt.utils.parse import ArgumentParser
from onmt.translate.translator import build_translator
from onmt.transforms.features import InferFeatsTransform
def critical(func):
"""Decorator for critical section (mutually exclusive code)"""
def wrapper(server_model, *args, **kwargs):
if sys.version_info[0] == 3:
if not server_model.running_lock.acquire(True, 120):
raise ServerModelError("Model %d running lock timeout"
% server_model.model_id)
else:
# semaphore doesn't have a timeout arg in Python 2.7
server_model.running_lock.acquire(True)
try:
o = func(server_model, *args, **kwargs)
except (Exception, RuntimeError):
server_model.running_lock.release()
raise
server_model.running_lock.release()
return o
return wrapper
class Timer:
def __init__(self, start=False):
self.stime = -1
self.prev = -1
self.times = {}
if start:
self.start()
def start(self):
self.stime = time.time()
self.prev = self.stime
self.times = {}
def tick(self, name=None, tot=False):
t = time.time()
if not tot:
elapsed = t - self.prev
else:
elapsed = t - self.stime
self.prev = t
if name is not None:
self.times[name] = elapsed
return elapsed
class ServerModelError(Exception):
pass
class CTranslate2Translator(object):
"""
This class wraps the ctranslate2.Translator object to
reproduce the onmt.translate.translator API.
"""
def __init__(self, model_path, ct2_translator_args,
ct2_translate_batch_args, target_prefix=False,
preload=False):
import ctranslate2
self.translator = ctranslate2.Translator(
model_path,
**ct2_translator_args)
self.ct2_translate_batch_args = ct2_translate_batch_args
self.target_prefix = target_prefix
if preload:
# perform a first request to initialize everything
dummy_translation = self.translate(["a"])
print("Performed a dummy translation to initialize the model",
dummy_translation)
time.sleep(1)
self.translator.unload_model(to_cpu=True)
@staticmethod
def convert_onmt_to_ct2_opts(ct2_translator_args,
ct2_translate_batch_args, opt):
def setdefault_if_exists_must_match(obj, name, value):
if name in obj:
assert value == obj[name], f"{name} is different in"\
" OpenNMT-py config and in CTranslate2 config"\
f" ({value} vs {obj[name]})"
else:
obj.setdefault(name, value)
default_for_translator = {
"inter_threads": 1,
"intra_threads": torch.get_num_threads(),
"compute_type": "default",
}
for name, value in default_for_translator.items():
ct2_translator_args.setdefault(name, value)
onmt_for_translator = {
"device": "cuda" if opt.cuda else "cpu",
"device_index": opt.gpu if opt.cuda else 0,
}
for name, value in onmt_for_translator.items():
setdefault_if_exists_must_match(
ct2_translator_args, name, value)
onmt_for_translate_batch_enforce = {
"beam_size": opt.beam_size,
"max_batch_size": opt.batch_size,
"num_hypotheses": opt.n_best,
"max_decoding_length": opt.max_length,
"min_decoding_length": opt.min_length,
}
for name, value in onmt_for_translate_batch_enforce.items():
setdefault_if_exists_must_match(
ct2_translate_batch_args, name, value)
def translate(self, texts_to_translate, batch_size=8,
tgt=None, src_feats=None):
assert (src_feats is None) or (src_feats == {}), \
"CTranslate2 does not support source features"
batch = [item.split(" ") for item in texts_to_translate]
if tgt is not None:
tgt = [item.split(" ") for item in tgt]
preds = self.translator.translate_batch(
batch,
target_prefix=tgt if self.target_prefix else None,
return_scores=True,
**self.ct2_translate_batch_args
)
scores = [[item["score"] for item in ex] for ex in preds]
predictions = [[" ".join(item["tokens"]) for item in ex]
for ex in preds]
return scores, predictions
def to_cpu(self):
self.translator.unload_model(to_cpu=True)
def to_gpu(self):
self.translator.load_model()
class TranslationServer(object):
def __init__(self):
self.models = {}
self.next_id = 0
def start(self, config_file):
"""Read the config file and pre-/load the models."""
self.config_file = config_file
with open(self.config_file) as f:
self.confs = json.load(f)
self.models_root = self.confs.get('models_root', './available_models')
for i, conf in enumerate(self.confs["models"]):
if "models" not in conf:
if "model" in conf:
# backwards compatibility for confs
conf["models"] = [conf["model"]]
else:
raise ValueError("""Incorrect config file: missing 'models'
parameter for model #%d""" % i)
check_model_config(conf, self.models_root)
kwargs = {'timeout': conf.get('timeout', None),
'load': conf.get('load', None),
'preprocess_opt': conf.get('preprocess', None),
'tokenizer_opt': conf.get('tokenizer', None),
'postprocess_opt': conf.get('postprocess', None),
'custom_opt': conf.get('custom_opt', None),
'on_timeout': conf.get('on_timeout', None),
'model_root': conf.get('model_root', self.models_root),
'ct2_model': conf.get('ct2_model', None),
'ct2_translator_args': conf.get('ct2_translator_args',
{}),
'ct2_translate_batch_args': conf.get(
'ct2_translate_batch_args', {}),
'features_opt': conf.get('features', None)
}
kwargs = {k: v for (k, v) in kwargs.items() if v is not None}
model_id = conf.get("id", None)
opt = conf["opt"]
opt["models"] = conf["models"]
self.preload_model(opt, model_id=model_id, **kwargs)
def clone_model(self, model_id, opt, timeout=-1):
"""Clone a model `model_id`.
Different options may be passed. If `opt` is None, it will use the
same set of options
"""
if model_id in self.models:
if opt is None:
opt = self.models[model_id].user_opt
opt["models"] = self.models[model_id].opt.models
return self.load_model(opt, timeout)
else:
raise ServerModelError("No such model '%s'" % str(model_id))
def load_model(self, opt, model_id=None, **model_kwargs):
"""Load a model given a set of options
"""
model_id = self.preload_model(opt, model_id=model_id, **model_kwargs)
load_time = self.models[model_id].load_time
return model_id, load_time
def preload_model(self, opt, model_id=None, **model_kwargs):
"""Preloading the model: updating internal datastructure
It will effectively load the model if `load` is set
"""
if model_id is not None:
if model_id in self.models.keys():
raise ValueError("Model ID %d already exists" % model_id)
else:
model_id = self.next_id
while model_id in self.models.keys():
model_id += 1
self.next_id = model_id + 1
print("Pre-loading model %d" % model_id)
model = ServerModel(opt, model_id, **model_kwargs)
self.models[model_id] = model
return model_id
def run(self, inputs):
"""Translate `inputs`
We keep the same format as the Lua version i.e.
``[{"id": model_id, "src": "sequence to translate"},{ ...}]``
We use inputs[0]["id"] as the model id
"""
model_id = inputs[0].get("id", 0)
if model_id in self.models and self.models[model_id] is not None:
return self.models[model_id].run(inputs)
else:
print("Error No such model '%s'" % str(model_id))
raise ServerModelError("No such model '%s'" % str(model_id))
def unload_model(self, model_id):
"""Manually unload a model.
It will free the memory and cancel the timer
"""
if model_id in self.models and self.models[model_id] is not None:
self.models[model_id].unload()
else:
raise ServerModelError("No such model '%s'" % str(model_id))
def list_models(self):
"""Return the list of available models
"""
models = []
for _, model in self.models.items():
models += [model.to_dict()]
return models
class ServerModel(object):
"""Wrap a model with server functionality.
Args:
opt (dict): Options for the Translator
model_id (int): Model ID
preprocess_opt (list): Options for preprocess processus or None
tokenizer_opt (dict): Options for the tokenizer or None
postprocess_opt (list): Options for postprocess processus or None
custom_opt (dict): Custom options, can be used within preprocess or
postprocess, default None
load (bool): whether to load the model during :func:`__init__()`
timeout (int): Seconds before running :func:`do_timeout()`
Negative values means no timeout
on_timeout (str): Options are ["to_cpu", "unload"]. Set what to do on
timeout (see :func:`do_timeout()`.)
model_root (str): Path to the model directory
it must contain the model and tokenizer file
"""
def __init__(self, opt, model_id, preprocess_opt=None, tokenizer_opt=None,
postprocess_opt=None, custom_opt=None, load=False, timeout=-1,
on_timeout="to_cpu", model_root="./", ct2_model=None,
ct2_translator_args=None, ct2_translate_batch_args=None,
features_opt=None):
self.model_root = model_root
self.opt = self.parse_opt(opt)
self.custom_opt = custom_opt
self.model_id = model_id
self.preprocess_opt = preprocess_opt
self.tokenizers_opt = tokenizer_opt
self.features_opt = features_opt
self.postprocess_opt = postprocess_opt
self.timeout = timeout
self.on_timeout = on_timeout
self.ct2_model = os.path.join(model_root, ct2_model) \
if ct2_model is not None else None
self.ct2_translator_args = ct2_translator_args
self.ct2_translate_batch_args = ct2_translate_batch_args
self.unload_timer = None
self.user_opt = opt
self.tokenizers = None
self.feats_transform = None
if len(self.opt.log_file) > 0:
log_file = os.path.join(model_root, self.opt.log_file)
else:
log_file = None
self.logger = init_logger(log_file=log_file,
log_file_level=self.opt.log_file_level,
rotate=True)
self.loading_lock = threading.Event()
self.loading_lock.set()
self.running_lock = threading.Semaphore(value=1)
set_random_seed(self.opt.seed, self.opt.cuda)
if self.preprocess_opt is not None:
self.logger.info("Loading preprocessor")
self.preprocessor = []
for function_path in self.preprocess_opt:
function = get_function_by_path(function_path)
self.preprocessor.append(function)
if self.tokenizers_opt is not None:
if "src" in self.tokenizers_opt and "tgt" in self.tokenizers_opt:
self.logger.info("Loading src & tgt tokenizer")
self.tokenizers = {
'src': self.build_tokenizer(tokenizer_opt['src']),
'tgt': self.build_tokenizer(tokenizer_opt['tgt'])
}
else:
self.logger.info("Loading tokenizer")
self.tokenizers_opt = {
'src': tokenizer_opt,
'tgt': tokenizer_opt
}
tokenizer = self.build_tokenizer(tokenizer_opt)
self.tokenizers = {
'src': tokenizer,
'tgt': tokenizer
}
if self.features_opt is not None:
self.feats_transform = InferFeatsTransform(
Namespace(**self.features_opt))
if self.postprocess_opt is not None:
self.logger.info("Loading postprocessor")
self.postprocessor = []
for function_path in self.postprocess_opt:
function = get_function_by_path(function_path)
self.postprocessor.append(function)
if load:
self.load(preload=True)
self.stop_unload_timer()
def parse_opt(self, opt):
"""Parse the option set passed by the user using `onmt.opts`
Args:
opt (dict): Options passed by the user
Returns:
opt (argparse.Namespace): full set of options for the Translator
"""
prec_argv = sys.argv
sys.argv = sys.argv[:1]
parser = ArgumentParser()
onmt.opts.translate_opts(parser)
models = opt['models']
if not isinstance(models, (list, tuple)):
models = [models]
opt['models'] = [os.path.join(self.model_root, model)
for model in models]
opt['src'] = "dummy_src"
for (k, v) in opt.items():
if k == 'models':
sys.argv += ['-model']
sys.argv += [str(model) for model in v]
elif type(v) == bool:
sys.argv += ['-%s' % k]
else:
sys.argv += ['-%s' % k, str(v)]
opt = parser.parse_args()
ArgumentParser.validate_translate_opts(opt)
opt.cuda = opt.gpu > -1
sys.argv = prec_argv
return opt
@property
def loaded(self):
return hasattr(self, 'translator')
def load(self, preload=False):
self.loading_lock.clear()
timer = Timer()
self.logger.info("Loading model %d" % self.model_id)
timer.start()
try:
if self.ct2_model is not None:
CTranslate2Translator.convert_onmt_to_ct2_opts(
self.ct2_translator_args, self.ct2_translate_batch_args,
self.opt)
self.translator = CTranslate2Translator(
self.ct2_model,
ct2_translator_args=self.ct2_translator_args,
ct2_translate_batch_args=self.ct2_translate_batch_args,
target_prefix=self.opt.tgt_prefix,
preload=preload)
else:
self.translator = build_translator(
self.opt, report_score=False,
out_file=codecs.open(os.devnull, "w", "utf-8"))
except RuntimeError as e:
raise ServerModelError("Runtime Error: %s" % str(e))
timer.tick("model_loading")
self.load_time = timer.tick()
self.reset_unload_timer()
self.loading_lock.set()
@critical
def run(self, inputs):
"""Translate `inputs` using this model
Args:
inputs (List[dict[str, str]]): [{"src": "..."},{"src": ...}]
Returns:
result (list): translations
times (dict): containing times
"""
self.stop_unload_timer()
timer = Timer()
timer.start()
self.logger.info("Running translation using %d" % self.model_id)
if not self.loading_lock.is_set():
self.logger.info(
"Model #%d is being loaded by another thread, waiting"
% self.model_id)
if not self.loading_lock.wait(timeout=30):
raise ServerModelError("Model %d loading timeout"
% self.model_id)
else:
if not self.loaded:
self.load()
timer.tick(name="load")
elif self.opt.cuda:
self.to_gpu()
timer.tick(name="to_gpu")
texts = []
head_spaces = []
tail_spaces = []
all_preprocessed = []
for i, inp in enumerate(inputs):
src = inp['src']
whitespaces_before, whitespaces_after = "", ""
match_before = re.search(r'^\s+', src)
match_after = re.search(r'\s+$', src)
if match_before is not None:
whitespaces_before = match_before.group(0)
if match_after is not None:
whitespaces_after = match_after.group(0)
head_spaces.append(whitespaces_before)
# every segment becomes a dict for flexibility purposes
seg_dict = self.maybe_preprocess(inp)
all_preprocessed.append(seg_dict)
for seg, ref, feats in zip_longest(
seg_dict["seg"], seg_dict["ref"],
seg_dict["src_feats"]):
tok = self.maybe_tokenize(seg)
if ref is not None:
ref = self.maybe_tokenize(ref, side='tgt')
inferred_feats = self.transform_feats(seg, tok, feats)
texts.append((tok, ref, inferred_feats))
tail_spaces.append(whitespaces_after)
empty_indices = []
texts_to_translate, texts_ref = [], []
texts_features = defaultdict(list)
for i, (tok, ref_tok, feats) in enumerate(texts):
if tok == "":
empty_indices.append(i)
else:
texts_to_translate.append(tok)
texts_ref.append(ref_tok)
for feat_name, feat_values in feats.items():
texts_features[feat_name].append(feat_values)
if any([item is None for item in texts_ref]):
texts_ref = None
scores = []
predictions = []
if len(texts_to_translate) > 0:
try:
scores, predictions = self.translator.translate(
texts_to_translate,
src_feats=texts_features,
tgt=texts_ref,
batch_size=len(texts_to_translate)
if self.opt.batch_size == 0
else self.opt.batch_size)
except (RuntimeError, Exception) as e:
err = "Error: %s" % str(e)
self.logger.error(err)
self.logger.error("repr(text_to_translate): "
+ repr(texts_to_translate))
self.logger.error("model: #%s" % self.model_id)
self.logger.error("model opt: " + str(self.opt.__dict__))
self.logger.error(traceback.format_exc())
raise ServerModelError(err)
timer.tick(name="translation")
self.logger.info("""Using model #%d\t%d inputs
\ttranslation time: %f""" % (self.model_id, len(texts),
timer.times['translation']))
self.reset_unload_timer()
# NOTE: translator returns lists of `n_best` list
def flatten_list(_list): return sum(_list, [])
tiled_texts = [t for t in texts_to_translate
for _ in range(self.opt.n_best)]
results = flatten_list(predictions)
def maybe_item(x): return x.item() if type(x) is torch.Tensor else x
scores = [maybe_item(score_tensor)
for score_tensor in flatten_list(scores)]
results = [self.maybe_detokenize_with_align(result, src)
for result, src in zip(results, tiled_texts)]
aligns = [align for _, align in results]
results = [tokens for tokens, _ in results]
# build back results with empty texts
for i in empty_indices:
j = i * self.opt.n_best
results = results[:j] + [""] * self.opt.n_best + results[j:]
aligns = aligns[:j] + [None] * self.opt.n_best + aligns[j:]
scores = scores[:j] + [0] * self.opt.n_best + scores[j:]
rebuilt_segs, scores, aligns = self.rebuild_seg_packages(
all_preprocessed, results, scores, aligns, self.opt.n_best)
results = [self.maybe_postprocess(seg) for seg in rebuilt_segs]
head_spaces = [h for h in head_spaces for i in range(self.opt.n_best)]
tail_spaces = [h for h in tail_spaces for i in range(self.opt.n_best)]
results = ["".join(items)
for items in zip(head_spaces, results, tail_spaces)]
self.logger.info("Translation Results: %d", len(results))
return results, scores, self.opt.n_best, timer.times, aligns
def rebuild_seg_packages(self, all_preprocessed, results,
scores, aligns, n_best):
"""
Rebuild proper segment packages based on initial n_seg.
"""
offset = 0
rebuilt_segs = []
avg_scores = []
merged_aligns = []
for i, seg_dict in enumerate(all_preprocessed):
n_seg = seg_dict["n_seg"]
sub_results = results[n_best * offset: (offset + n_seg) * n_best]
sub_scores = scores[n_best * offset: (offset + n_seg) * n_best]
sub_aligns = aligns[n_best * offset: (offset + n_seg) * n_best]
for j in range(n_best):
_seg_dict = deepcopy(seg_dict)
_seg_dict["seg"] = list(islice(sub_results, j, None, n_best))
rebuilt_segs.append(_seg_dict)
sub_sub_scores = list(islice(sub_scores, j, None, n_best))
avg_score = sum(sub_sub_scores)/n_seg if n_seg != 0 else 0
avg_scores.append(avg_score)
sub_sub_aligns = list(islice(sub_aligns, j, None, n_best))
merged_aligns.append(sub_sub_aligns)
offset += n_seg
return rebuilt_segs, avg_scores, merged_aligns
def do_timeout(self):
"""Timeout function that frees GPU memory.
Moves the model to CPU or unloads it; depending on
attr`self.on_timemout` value
"""
if self.on_timeout == "unload":
self.logger.info("Timeout: unloading model %d" % self.model_id)
self.unload()
if self.on_timeout == "to_cpu":
self.logger.info("Timeout: sending model %d to CPU"
% self.model_id)
self.to_cpu()
@critical
def unload(self):
self.logger.info("Unloading model %d" % self.model_id)
del self.translator
if self.opt.cuda:
torch.cuda.empty_cache()
self.stop_unload_timer()
self.unload_timer = None
def stop_unload_timer(self):
if self.unload_timer is not None:
self.unload_timer.cancel()
def reset_unload_timer(self):
if self.timeout < 0:
return
self.stop_unload_timer()
self.unload_timer = threading.Timer(self.timeout, self.do_timeout)
self.unload_timer.start()
def to_dict(self):
hide_opt = ["models", "src"]
d = {"model_id": self.model_id,
"opt": {k: self.user_opt[k] for k in self.user_opt.keys()
if k not in hide_opt},
"models": self.user_opt["models"],
"loaded": self.loaded,
"timeout": self.timeout,
}
if self.tokenizers_opt is not None:
d["tokenizer"] = self.tokenizers_opt
return d
@critical
def to_cpu(self):
"""Move the model to CPU and clear CUDA cache."""
if type(self.translator) == CTranslate2Translator:
self.translator.to_cpu()
else:
self.translator.model.cpu()
if self.opt.cuda:
torch.cuda.empty_cache()
def to_gpu(self):
"""Move the model to GPU."""
if type(self.translator) == CTranslate2Translator:
self.translator.to_gpu()
else:
torch.cuda.set_device(self.opt.gpu)
self.translator.model.cuda()
def maybe_preprocess(self, sequence):
"""Preprocess the sequence (or not)
"""
if sequence.get("src", None) is not None:
sequence = deepcopy(sequence)
sequence["seg"] = [sequence["src"].strip()]
sequence.pop("src")
sequence["ref"] = [sequence.get('ref', None)]
sequence["src_feats"] = [sequence.get('src_feats', {})]
sequence["n_seg"] = 1
if self.preprocess_opt is not None:
return self.preprocess(sequence)
return sequence
def preprocess(self, sequence):
"""Preprocess a single sequence.
Args:
sequence (str): The sequence to preprocess.
Returns:
sequence (str): The preprocessed sequence.
"""
if self.preprocessor is None:
raise ValueError("No preprocessor loaded")
for function in self.preprocessor:
sequence = function(sequence, self)
return sequence
def transform_feats(self, raw_src, tok_src, feats):
"""Apply InferFeatsTransform to features"""
if self.feats_transform is None:
return feats
ex = {
"src": tok_src.split(' '),
"src_original": raw_src.split(' '),
"src_feats": {k: v.split(' ') for k, v in feats.items()}
}
transformed_ex = self.feats_transform.apply(ex)
if not transformed_ex:
raise Exception("Error inferring feats")
transformed_feats = dict()
for feat_name, feat_values in transformed_ex["src_feats"].items():
transformed_feats[feat_name] = " ".join(feat_values)
return transformed_feats
def build_tokenizer(self, tokenizer_opt):
"""Build tokenizer described by `tokenizer_opt`."""
if "type" not in tokenizer_opt:
raise ValueError(
"Missing mandatory tokenizer option 'type'")
if tokenizer_opt['type'] == 'sentencepiece':
if "model" not in tokenizer_opt:
raise ValueError(
"Missing mandatory tokenizer option 'model'")
import sentencepiece as spm
tokenizer = spm.SentencePieceProcessor()
model_path = os.path.join(self.model_root,
tokenizer_opt['model'])
tokenizer.Load(model_path)
elif tokenizer_opt['type'] == 'pyonmttok':
if "params" not in tokenizer_opt:
raise ValueError(
"Missing mandatory tokenizer option 'params'")
import pyonmttok
if tokenizer_opt["mode"] is not None:
mode = tokenizer_opt["mode"]
else:
mode = None
# load can be called multiple times: modify copy
tokenizer_params = dict(tokenizer_opt["params"])
for key, value in tokenizer_opt["params"].items():
if key.endswith("path"):
tokenizer_params[key] = os.path.join(
self.model_root, value)
tokenizer = pyonmttok.Tokenizer(mode,
**tokenizer_params)
else:
raise ValueError("Invalid value for tokenizer type")
return tokenizer
def maybe_tokenize(self, sequence, side='src'):
"""Tokenize the sequence (or not).
Same args/returns as `tokenize`
"""
if self.tokenizers_opt is not None:
return self.tokenize(sequence, side)
return sequence
def tokenize(self, sequence, side='src'):
"""Tokenize a single sequence.
Args:
sequence (str): The sequence to tokenize.
Returns:
tok (str): The tokenized sequence.
"""
if self.tokenizers is None:
raise ValueError("No tokenizer loaded")
if self.tokenizers_opt[side]["type"] == "sentencepiece":
tok = self.tokenizers[side].EncodeAsPieces(sequence)
tok = " ".join(tok)
elif self.tokenizers_opt[side]["type"] == "pyonmttok":
tok, _ = self.tokenizers[side].tokenize(sequence)
tok = " ".join(tok)
return tok
def tokenizer_marker(self, side='src'):
"""Return marker used in `side` tokenizer."""
marker = None
if self.tokenizers_opt is not None:
tokenizer_type = self.tokenizers_opt[side].get('type', None)
if tokenizer_type == "pyonmttok":
params = self.tokenizers_opt[side].get('params', None)
if params is not None:
if params.get("joiner_annotate", None) is not None:
marker = 'joiner'
elif params.get("spacer_annotate", None) is not None:
marker = 'spacer'
elif tokenizer_type == "sentencepiece":
marker = 'spacer'
return marker
def maybe_detokenize_with_align(self, sequence, src, side='tgt'):
"""De-tokenize (or not) the sequence (with alignment).
Args:
sequence (str): The sequence to detokenize, possible with
alignment seperate by ` ||| `.
Returns:
sequence (str): The detokenized sequence.
align (str): The alignment correspand to detokenized src/tgt
sorted or None if no alignment in output.
"""
align = None
if self.opt.report_align:
# output contain alignment
sequence, align = sequence.split(DefaultTokens.ALIGNMENT_SEPARATOR)
if align != '':
align = self.maybe_convert_align(src, sequence, align)
sequence = self.maybe_detokenize(sequence, side)
return (sequence, align)
def maybe_detokenize(self, sequence, side='tgt'):
"""De-tokenize the sequence (or not)
Same args/returns as :func:`tokenize()`
"""
if self.tokenizers_opt is not None and ''.join(sequence.split()) != '':
return self.detokenize(sequence, side)
return sequence
def detokenize(self, sequence, side='tgt'):
"""Detokenize a single sequence
Same args/returns as :func:`tokenize()`
"""
if self.tokenizers is None:
raise ValueError("No tokenizer loaded")
if self.tokenizers_opt[side]["type"] == "sentencepiece":
detok = self.tokenizers[side].DecodePieces(sequence.split())
elif self.tokenizers_opt[side]["type"] == "pyonmttok":
detok = self.tokenizers[side].detokenize(sequence.split())
return detok
def maybe_convert_align(self, src, tgt, align):
"""Convert alignment to match detokenized src/tgt (or not).
Args:
src (str): The tokenized source sequence.
tgt (str): The tokenized target sequence.
align (str): The alignment correspand to src/tgt pair.
Returns:
align (str): The alignment correspand to detokenized src/tgt.
"""
if self.tokenizers_opt is not None:
src_marker = self.tokenizer_marker(side='src')
tgt_marker = self.tokenizer_marker(side='tgt')
if src_marker is None or tgt_marker is None:
raise ValueError("To get decoded alignment, joiner/spacer "
"should be used in both side's tokenizer.")
elif ''.join(tgt.split()) != '':
align = to_word_align(src, tgt, align, src_marker, tgt_marker)
return align
def maybe_postprocess(self, sequence):
"""Postprocess the sequence (or not)
"""
if self.postprocess_opt is not None:
return self.postprocess(sequence)
else:
return sequence["seg"][0]
def postprocess(self, sequence):
"""Preprocess a single sequence.
Args:
sequence (str): The sequence to process.
Returns:
sequence (str): The postprocessed sequence.
"""
if self.postprocessor is None:
raise ValueError("No postprocessor loaded")
for function in self.postprocessor:
sequence = function(sequence, self)
return sequence
def get_function_by_path(path, args=[], kwargs={}):
module_name = ".".join(path.split(".")[:-1])
function_name = path.split(".")[-1]
try:
module = importlib.import_module(module_name)
except ValueError as e:
print("Cannot import module '%s'" % module_name)
raise e
function = getattr(module, function_name)
return function