|
|
|
|
|
import unittest |
|
|
|
from math import log,exp |
|
|
|
import nbest |
|
import numpy.testing as nptest |
|
import sampler |
|
from train import * |
|
import util |
|
|
|
class TestParabaloidOptimiser(unittest.TestCase): |
|
def setUp(self): |
|
self.o = ParabaloidOptimiser(np.array([1,2,3,4])) |
|
|
|
def test_parabaloid_bfgs(self): |
|
start = np.array([2,2,2,2]) |
|
minimum = self.o.optimise_bfgs(start) |
|
for m in minimum: |
|
self.assertAlmostEqual(m,0) |
|
|
|
|
|
def test_parabaloid_lbfgs(self): |
|
start = np.array([2,2,2,2]) |
|
minimum = self.o.optimise_lbfgs(start) |
|
for m in minimum: |
|
self.assertAlmostEqual(m,0) |
|
|
|
class TestLogisticRegressionOptimiser(unittest.TestCase): |
|
|
|
def test_objective(self): |
|
x = np.array([[1], [0]]) |
|
y = np.array([1,-1]) |
|
lro = LogisticRegressionOptimiser(x,y) |
|
w = np.array([2]) |
|
expected = -log(1 / (1 + exp(-2))) - log(0.5) |
|
self.assertAlmostEqual(lro.objective(w), expected) |
|
|
|
def test_reg_objective(self): |
|
x = np.array([[1], [0]]) |
|
y = np.array([1,-1]) |
|
alpha = 0.1 |
|
lro = LogisticRegressionOptimiser(x,y,alpha) |
|
w = np.array([2]) |
|
expected = -log(1 / (1 + exp(-2))) - log(0.5) + 0.5*2*2 * alpha |
|
self.assertAlmostEqual(lro.objective(w), expected) |
|
|
|
def test_gradient_j(self): |
|
x = np.array([[1], [0]]) |
|
y = np.array([1,-1]) |
|
lro = LogisticRegressionOptimiser(x,y) |
|
w = np.array([2]) |
|
expected = -1 / (1 + exp(2)) |
|
self.assertAlmostEqual(lro.grad_j(w,0), expected) |
|
|
|
def test_gradient(self): |
|
x = np.array([[1,1], [0,1]]) |
|
y = np.array([1,-1]) |
|
w = np.array([2,1]) |
|
lro = LogisticRegressionOptimiser(x,y) |
|
e0 = -1 / (1 + exp(3)) |
|
e1 = -1 / (1 + exp(3)) + 1/ (1 + exp(-1)) |
|
actual = lro.grad(w) |
|
|
|
self.assertAlmostEqual(actual[0], e0) |
|
self.assertAlmostEqual(actual[1], e1) |
|
|
|
def test_reg_gradient(self): |
|
x = np.array([[1,1], [0,1]]) |
|
y = np.array([1,-1]) |
|
alpha = 0.2 |
|
w = np.array([2,1]) |
|
lro = LogisticRegressionOptimiser(x,y, alpha) |
|
e0 = -1 / (1 + exp(3)) + w[0]*alpha |
|
e1 = -1 / (1 + exp(3)) + 1/ (1 + exp(-1)) +w[1]*alpha |
|
actual = lro.grad(w) |
|
self.assertAlmostEqual(actual[0], e0) |
|
self.assertAlmostEqual(actual[1], e1) |
|
|
|
|
|
def test_train(self): |
|
x = np.array([[1,1],[-1,-2]]) |
|
y = np.array([1,-1]) |
|
w0 = np.array([1,-1]) |
|
lro = LogisticRegressionOptimiser(x,y) |
|
actual = lro.train(w0, debug=False) |
|
self.assertAlmostEqual(actual[0], 12.03882542) |
|
self.assertAlmostEqual(actual[1], 8.02317419) |
|
|
|
def test_train_reg(self): |
|
x = np.array([[1,1],[-1,1]]) |
|
y = np.array([1,-1]) |
|
alpha = 0.1 |
|
w0 = np.array([1,-1]) |
|
lro = LogisticRegressionOptimiser(x,y,alpha) |
|
actual = lro.train(w0, debug=False) |
|
self.assertAlmostEqual(actual[1],0) |
|
|
|
self.assertTrue(1 / (1+exp(-np.dot(actual,np.array([1,1])))) > 0.5) |
|
self.assertTrue(1 / (1+exp(-np.dot(actual,np.array([-1,-2])))) < 0.5) |
|
|
|
def test_xy(self): |
|
"""Test pre-calculation of the y_i*x_ij vectors""" |
|
x = np.array([[1,3], [2,8], [1,3]]) |
|
y = np.array([1,1,-1]) |
|
lro = LogisticRegressionOptimiser(x,y) |
|
expected = np.array([[1,3], [2,8], [-1,-3]]) |
|
for i in 0,1,2: |
|
for j in 0,1: |
|
self.assertEqual(lro.xy[i][j], expected[i][j]) |
|
|
|
class TestMixtureModelTrainer(unittest.TestCase): |
|
|
|
def setUp(self): |
|
|
|
nbest._feature_index = {"tm" : [0,3], "lm" : [3,4]} |
|
log05 = np.log(0.5) |
|
log03 = np.log(0.3) |
|
log02 = np.log(0.2) |
|
log01 = np.log(0.1) |
|
hyp0 = nbest.Hypothesis("a |0-0| b c |1-2|", [log05, log05, log02, log03], True) |
|
hyp0.input_line = "A B C" |
|
hyp0.score = 3 |
|
|
|
hyp0.phrase_scores = np.array([\ |
|
[[0.2, 0.3],\ |
|
[0.4, 0.3]],\ |
|
[[0, 0.2],\ |
|
[0.4,0.2]]]) |
|
|
|
hyp1 = nbest.Hypothesis("x |0-2|", [log02, log03, log03, log01], True) |
|
hyp1.input_line = "X Y Z" |
|
hyp1.score = 2 |
|
hyp1.phrase_scores = np.array([\ |
|
[[0.1, 0.1]],\ |
|
[[0.8,0.1]]]) |
|
|
|
hyp2 = nbest.Hypothesis("z |0-1| w |2-2| p |3-3|", [log02, log02, log05, log05], True) |
|
hyp2.score = 1 |
|
hyp2.input_line = "M N O" |
|
|
|
hyp2.phrase_scores = np.array([\ |
|
[[0.1, 0.2],\ |
|
[0.3,0.5],\ |
|
[0.4,0.6]],\ |
|
[[0.1,0.5],\ |
|
[0.6,0.1],\ |
|
[0.2,0.2]]]) |
|
self.samples = [sampler.Sample(hyp0,hyp1), sampler.Sample(hyp1,hyp2)] |
|
self.trainer = MixtureModelTrainer(self.samples) |
|
|
|
def get_phrase_scores(self, hypothesis, iw): |
|
nptest.assert_almost_equal(np.sum(iw, axis=0), np.array([1.0,1.0])) |
|
phrase_probs = hypothesis.phrase_scores |
|
interpolated_probs = np.sum(np.expand_dims(iw,1)*phrase_probs, axis = 0) |
|
|
|
total_probs = np.prod(interpolated_probs, axis = 0) |
|
return util.safelog(total_probs) |
|
|
|
def model_score(self, hypothesis, weights): |
|
|
|
|
|
iw = np.array([[weights[-2], weights[-1]], |
|
[1-weights[-2],1-weights[-1]]]) |
|
|
|
phrase_scores = self.get_phrase_scores(hypothesis,iw) |
|
weighted_phrase_scores = weights[:2] * phrase_scores |
|
score = np.sum(weighted_phrase_scores) |
|
|
|
other_score = np.sum(weights[2:4]*hypothesis.fv[2:4]) |
|
return score + other_score |
|
|
|
|
|
def test_objective(self): |
|
|
|
|
|
weights = np.array([0.2,0.1,0.4,0.5,0.3,0.6]) |
|
actual = self.trainer.objective(weights) |
|
|
|
|
|
expected = 0 |
|
for sample in self.samples: |
|
hyp1_model_score = self.model_score(sample.hyp1, weights) |
|
hyp2_model_score = self.model_score(sample.hyp2, weights) |
|
y = 1 |
|
if sample.hyp2.score > sample.hyp1.score: y = -1 |
|
expected -= log(sigmoid(y * (hyp1_model_score - hyp2_model_score))) |
|
|
|
expected += 0.5 * self.trainer.alpha * np.dot(weights[:-2], weights[:-2]) |
|
self.assertAlmostEquals(actual,expected) |
|
|
|
def test_gradient_other(self): |
|
|
|
|
|
delta_s = np.vstack((self.samples[0].hyp1.fv-self.samples[0].hyp2.fv,\ |
|
self.samples[1].hyp1.fv-self.samples[1].hyp2.fv)) |
|
|
|
|
|
other_delta_s = delta_s[:,2:] |
|
actual = self.trainer.gradient_other() |
|
nptest.assert_almost_equal(actual,other_delta_s) |
|
|
|
def test_gradient_phrase(self): |
|
iw = np.array([[0.3, 0.4],[0.7,0.6]]) |
|
sample_deltaf_list = [] |
|
for sample in self.samples: |
|
f_A = self.get_phrase_scores(sample.hyp1, iw) |
|
f_B = self.get_phrase_scores(sample.hyp2, iw) |
|
sample_deltaf_list.append(f_A - f_B) |
|
expected = np.vstack(sample_deltaf_list) |
|
actual = self.trainer.gradient_phrase(iw) |
|
nptest.assert_almost_equal(actual,expected) |
|
|
|
def test_gradient_interp(self): |
|
|
|
iw = np.array([[0.3, 0.4],[0.7,0.6]]) |
|
phrasew = np.array([1,2]) |
|
num_ttables = iw.shape[0] |
|
num_phrase_features = iw.shape[1] |
|
bysample_list = [] |
|
|
|
for sample in self.samples: |
|
|
|
|
|
byhyp = [] |
|
for hyp in [sample.hyp1,sample.hyp2]: |
|
|
|
grad_k = np.array([0.0] * ((num_ttables - 1) * num_phrase_features)) |
|
|
|
for j,probs in enumerate(np.transpose(hyp.phrase_scores)): |
|
|
|
|
|
grad_jk = np.array([0.0] * (len(iw)-1)) |
|
for l,phi in enumerate(probs): |
|
|
|
|
|
|
|
num = phi[:-1] - phi[-1] |
|
denom = np.sum(iw[:,j]*phi) |
|
grad_jk = grad_jk + (num/denom) |
|
self.assertEquals(len(grad_jk), num_ttables-1) |
|
|
|
|
|
|
|
grad_k[j*(num_ttables-1):(j+1)*(num_ttables-1)] =\ |
|
grad_k[j*(num_ttables-1):(j+1)*(num_ttables-1)] + phrasew[j]*grad_jk |
|
|
|
byhyp.append(grad_k) |
|
bysample_list.append(byhyp[0]-byhyp[1]) |
|
|
|
expected = np.vstack(bysample_list) |
|
actual = self.trainer.gradient_interp(iw,phrasew) |
|
nptest.assert_almost_equal(actual,expected, decimal=5) |
|
|
|
def test_gradient(self): |
|
|
|
|
|
weights = np.array([0.2,0.1,0.4,0.5,0.6,0.3]) |
|
expected = np.array([0.0] * len(weights)) |
|
|
|
iw = np.array([[weights[-2], weights[-1]], |
|
[1-weights[-2],1-weights[-1]]]) |
|
phrase_g = self.trainer.gradient_phrase(iw) |
|
other_g = self.trainer.gradient_other() |
|
interp_g = self.trainer.gradient_interp(iw,weights[:2]) |
|
for k,sample in enumerate(self.samples): |
|
hyp1_model_score = self.model_score(sample.hyp1, weights) |
|
hyp2_model_score = self.model_score(sample.hyp2, weights) |
|
y = 1 |
|
if sample.hyp2.score > sample.hyp1.score: y = -1 |
|
delta_score = hyp1_model_score - hyp2_model_score |
|
sig_delta_score = sigmoid(-y * delta_score) |
|
|
|
expected[:2] -= (phrase_g[k]*sig_delta_score*y) |
|
|
|
expected[2:4] -= (other_g[k]*sig_delta_score*y) |
|
|
|
expected[-2:] -= (interp_g[k]*sig_delta_score*y) |
|
expected += self.trainer.alpha*np.append(weights[:-2], np.array([0.0,0.0])) |
|
actual = self.trainer.gradient(weights) |
|
nptest.assert_almost_equal(actual,expected) |
|
|
|
def test_split_weights(self): |
|
w = np.array([1,2,3,4,0.2,0.3]) |
|
sw = self.trainer.get_split_weights(w) |
|
self.assertEquals(len(sw),3) |
|
nptest.assert_almost_equal(sw['phrase'], np.array([1,2])) |
|
nptest.assert_almost_equal(sw['other'], np.array([3,4])) |
|
nptest.assert_almost_equal(sw['interp'], \ |
|
np.array([[0.2,0.3], [0.8,0.7]])) |
|
|
|
|
|
def test_train(self): |
|
"""Simple test that it runs without errors""" |
|
print "x=",self.trainer.train() |
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|
|
suite = unittest.TestSuite([ |
|
unittest.TestLoader().loadTestsFromTestCase(TestParabaloidOptimiser), |
|
unittest.TestLoader().loadTestsFromTestCase(TestLogisticRegressionOptimiser), |
|
unittest.TestLoader().loadTestsFromTestCase(TestMixtureModelTrainer)]) |
|
|
|
|
|
|