|
--- |
|
base_model: sal076/L3.1_RP_TEST3 |
|
language: |
|
- en |
|
license: llama3.1 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- llama |
|
- trl |
|
- sft |
|
- llama-cpp |
|
--- |
|
|
|
# sal076/L3.1_RP_TEST3-Q4_K_M-GGUF |
|
This model Is a (Hopefully) better version then my last model |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo sal076/L3.1_RP_TEST3-Q4_K_M-GGUF --hf-file l3.1_rp_test3-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo sal076/L3.1_RP_TEST3-Q4_K_M-GGUF --hf-file l3.1_rp_test3-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo sal076/L3.1_RP_TEST3-Q4_K_M-GGUF --hf-file l3.1_rp_test3-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo sal076/L3.1_RP_TEST3-Q4_K_M-GGUF --hf-file l3.1_rp_test3-q4_k_m.gguf -c 2048 |
|
``` |