Edit model card

arabert_baseline_vocabulary_task8_fold1

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2316
  • Qwk: 0.8078
  • Mse: 0.2316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.5 2 1.2852 0.2500 1.2852
No log 1.0 4 0.9284 0.5172 0.9284
No log 1.5 6 0.5474 0.6196 0.5474
No log 2.0 8 0.4192 0.6172 0.4192
No log 2.5 10 0.3456 0.7627 0.3456
No log 3.0 12 0.3051 0.832 0.3051
No log 3.5 14 0.2935 0.7850 0.2935
No log 4.0 16 0.2662 0.8078 0.2662
No log 4.5 18 0.2641 0.832 0.2641
No log 5.0 20 0.2554 0.7956 0.2554
No log 5.5 22 0.2536 0.7956 0.2536
No log 6.0 24 0.2384 0.7956 0.2384
No log 6.5 26 0.2490 0.7956 0.2490
No log 7.0 28 0.2542 0.7956 0.2542
No log 7.5 30 0.2514 0.8269 0.2514
No log 8.0 32 0.2475 0.8409 0.2475
No log 8.5 34 0.2401 0.8078 0.2401
No log 9.0 36 0.2365 0.8078 0.2365
No log 9.5 38 0.2330 0.8078 0.2330
No log 10.0 40 0.2316 0.8078 0.2316

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_baseline_vocabulary_task8_fold1

Finetuned
(424)
this model