|
--- |
|
datasets: |
|
- salma-remyx/test_startup_advice_50_samples |
|
base_model: google/gemma-2b-it |
|
library_name: peft |
|
tags: |
|
- remyx |
|
--- |
|
|
|
# Model Card for test_train_general_1 |
|
|
|
**test_train_general_1** uses `google/gemma-2b-it` as the backbone. |
|
|
|
## Model Details |
|
|
|
This model is fine-tuned on the `salma-remyx/test_startup_advice_50_samples` dataset designed to enhance specific reasoning capabilities. |
|
|
|
### Model Description |
|
|
|
This model was fine-tuned for task 'llm' using data generated on 20:37 January 08, 2025. |
|
|
|
- **Developed by:** remyx.ai |
|
- **Model type:** Language Model, Adapter Model |
|
- **Finetuned from model:** google/gemma-2b-it |
|
|
|
## Usage |
|
|
|
Use the code snippet below to load the base model and apply the adapter for inference: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
# Load the base model |
|
base_model_name = "google/gemma-2b-it" |
|
adapter_path = "/path/to/adapter" # Replace with actual adapter path |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name) |
|
base_model = AutoModelForCausalLM.from_pretrained(base_model_name) |
|
|
|
# Apply the adapter |
|
model = PeftModel.from_pretrained(base_model, adapter_path) |
|
model = model.merge_and_unload() |
|
|
|
# Run inference |
|
input_text = "Your input text here" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|