Uploaded model
- Developed by: sam-murayama
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Uses
- ベースモデルllm-jp/llm-jp-3-13bに本アダプタモデルsam-murayama/llm-jp-3-13b-it_03_loraを合体し、elyza-tasks-100-TV_0.jsonlに対して回答させたデータllm-jp-3-13b-it_03_lora_output.jsonlを出力する
- 上記の過程として、そのプログラムを提示する
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "sam-murayama/llm-jp-3-13b-it_03_lora"
HF_TOKEN = "Your Token" #@param {type:"string"}
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
dtype=dtype,
load_in_4bit=load_in_4bit,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
json_file_id = re.sub(".*/", "", adapter_id)
with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Model tree for sam-murayama/llm-jp-3-13b-it_03_lora
Base model
llm-jp/llm-jp-3-13b