dropoff-utcustom-train-SF-RGBD-b5_5
This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.2636
- Mean Iou: 0.4256
- Mean Accuracy: 0.6832
- Overall Accuracy: 0.9656
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.3752
- Accuracy Undropoff: 0.9912
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.3118
- Iou Undropoff: 0.9650
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1487 | 5.0 | 10 | 1.0250 | 0.2562 | 0.6276 | 0.6778 | nan | 0.5730 | 0.6823 | 0.0 | 0.0971 | 0.6714 |
1.0128 | 10.0 | 20 | 0.9030 | 0.3142 | 0.6730 | 0.8268 | nan | 0.5053 | 0.8407 | 0.0 | 0.1195 | 0.8231 |
0.8561 | 15.0 | 30 | 0.7359 | 0.3520 | 0.6913 | 0.8949 | nan | 0.4692 | 0.9133 | 0.0 | 0.1632 | 0.8928 |
0.7551 | 20.0 | 40 | 0.6534 | 0.3634 | 0.6999 | 0.9090 | nan | 0.4719 | 0.9280 | 0.0 | 0.1829 | 0.9072 |
0.6236 | 25.0 | 50 | 0.5938 | 0.3710 | 0.7001 | 0.9189 | nan | 0.4614 | 0.9388 | 0.0 | 0.1955 | 0.9173 |
0.4977 | 30.0 | 60 | 0.5293 | 0.3850 | 0.6987 | 0.9341 | nan | 0.4420 | 0.9555 | 0.0 | 0.2222 | 0.9329 |
0.4188 | 35.0 | 70 | 0.4859 | 0.3935 | 0.6941 | 0.9425 | nan | 0.4231 | 0.9650 | 0.0 | 0.2390 | 0.9415 |
0.3532 | 40.0 | 80 | 0.4278 | 0.4019 | 0.6823 | 0.9519 | nan | 0.3881 | 0.9764 | 0.0 | 0.2547 | 0.9511 |
0.3187 | 45.0 | 90 | 0.3914 | 0.4098 | 0.6873 | 0.9560 | nan | 0.3942 | 0.9804 | 0.0 | 0.2742 | 0.9553 |
0.2631 | 50.0 | 100 | 0.3647 | 0.4134 | 0.6918 | 0.9575 | nan | 0.4020 | 0.9815 | 0.0 | 0.2835 | 0.9567 |
0.2565 | 55.0 | 110 | 0.3424 | 0.4141 | 0.6895 | 0.9585 | nan | 0.3962 | 0.9829 | 0.0 | 0.2846 | 0.9578 |
0.2259 | 60.0 | 120 | 0.3127 | 0.4178 | 0.6853 | 0.9613 | nan | 0.3843 | 0.9863 | 0.0 | 0.2926 | 0.9607 |
0.2263 | 65.0 | 130 | 0.2920 | 0.4202 | 0.6822 | 0.9632 | nan | 0.3757 | 0.9886 | 0.0 | 0.2981 | 0.9626 |
0.1961 | 70.0 | 140 | 0.2755 | 0.4218 | 0.6769 | 0.9649 | nan | 0.3627 | 0.9911 | 0.0 | 0.3009 | 0.9644 |
0.1897 | 75.0 | 150 | 0.2726 | 0.4232 | 0.6803 | 0.9650 | nan | 0.3698 | 0.9908 | 0.0 | 0.3052 | 0.9645 |
0.1863 | 80.0 | 160 | 0.2762 | 0.4241 | 0.6830 | 0.9649 | nan | 0.3756 | 0.9904 | 0.0 | 0.3079 | 0.9643 |
0.1656 | 85.0 | 170 | 0.2730 | 0.4241 | 0.6809 | 0.9653 | nan | 0.3708 | 0.9911 | 0.0 | 0.3076 | 0.9648 |
0.1745 | 90.0 | 180 | 0.2740 | 0.4241 | 0.6821 | 0.9651 | nan | 0.3736 | 0.9907 | 0.0 | 0.3079 | 0.9645 |
0.1726 | 95.0 | 190 | 0.2779 | 0.4242 | 0.6854 | 0.9645 | nan | 0.3809 | 0.9898 | 0.0 | 0.3085 | 0.9639 |
0.158 | 100.0 | 200 | 0.2661 | 0.4248 | 0.6808 | 0.9656 | nan | 0.3701 | 0.9915 | 0.0 | 0.3094 | 0.9651 |
0.19 | 105.0 | 210 | 0.2667 | 0.4240 | 0.6790 | 0.9656 | nan | 0.3664 | 0.9916 | 0.0 | 0.3070 | 0.9651 |
0.1533 | 110.0 | 220 | 0.2696 | 0.4258 | 0.6843 | 0.9655 | nan | 0.3777 | 0.9910 | 0.0 | 0.3126 | 0.9649 |
0.1644 | 115.0 | 230 | 0.2690 | 0.4261 | 0.6855 | 0.9654 | nan | 0.3803 | 0.9908 | 0.0 | 0.3136 | 0.9648 |
0.1594 | 120.0 | 240 | 0.2636 | 0.4256 | 0.6832 | 0.9656 | nan | 0.3752 | 0.9912 | 0.0 | 0.3118 | 0.9650 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 145
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.