wav2vec2-xlsr-tatar / README.md
anton-l's picture
anton-l HF staff
Upload README.md
c6b788c
---
language:
- tt
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- model_for_talk
- mozilla-foundation/common_voice_8_0
- robust-speech-event
- tt
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: sammy786/wav2vec2-xlsr-tatar
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: tt
metrics:
- name: Test WER
type: wer
value: 16.87
- name: Test CER
type: cer
value: 3.64
---
# sammy786/wav2vec2-xlsr-tatar
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - tt dataset.
It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets):
- Loss: 7.66
- Wer: 7.08
## Model description
"facebook/wav2vec2-xls-r-1b" was finetuned.
## Intended uses & limitations
More information needed
## Training and evaluation data
Training data -
Common voice Finnish train.tsv, dev.tsv and other.tsv
## Training procedure
For creating the train dataset, all possible datasets were appended and 90-10 split was used.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000045637994662983496
- train_batch_size: 16
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Step | Training Loss | Validation Loss | Wer |
|-------|---------------|-----------------|----------|
| 200 | 4.849400 | 1.874908 | 0.995232 |
| 400 | 1.105700 | 0.257292 | 0.367658 |
| 600 | 0.723000 | 0.181150 | 0.250513 |
| 800 | 0.660600 | 0.167009 | 0.226078 |
| 1000 | 0.568000 | 0.135090 | 0.177339 |
| 1200 | 0.721200 | 0.117469 | 0.166413 |
| 1400 | 0.416300 | 0.115142 | 0.153765 |
| 1600 | 0.346000 | 0.105782 | 0.153963 |
| 1800 | 0.279700 | 0.102452 | 0.146149 |
| 2000 | 0.273800 | 0.095818 | 0.128468 |
| 2200 | 0.252900 | 0.102302 | 0.133766 |
| 2400 | 0.255100 | 0.096592 | 0.121316 |
| 2600 | 0.229600 | 0.091263 | 0.124561 |
| 2800 | 0.213900 | 0.097748 | 0.125687 |
| 3000 | 0.210700 | 0.091244 | 0.125422 |
| 3200 | 0.202600 | 0.084076 | 0.106284 |
| 3400 | 0.200900 | 0.093809 | 0.113238 |
| 3600 | 0.192700 | 0.082918 | 0.108139 |
| 3800 | 0.182000 | 0.084487 | 0.103371 |
| 4000 | 0.167700 | 0.091847 | 0.104960 |
| 4200 | 0.183700 | 0.085223 | 0.103040 |
| 4400 | 0.174400 | 0.083862 | 0.100589 |
| 4600 | 0.163100 | 0.086493 | 0.099728 |
| 4800 | 0.162000 | 0.081734 | 0.097543 |
| 5000 | 0.153600 | 0.077223 | 0.092974 |
| 5200 | 0.153700 | 0.086217 | 0.090789 |
| 5400 | 0.140200 | 0.093256 | 0.100457 |
| 5600 | 0.142900 | 0.086903 | 0.097742 |
| 5800 | 0.131400 | 0.083068 | 0.095225 |
| 6000 | 0.126000 | 0.086642 | 0.091252 |
| 6200 | 0.135300 | 0.083387 | 0.091186 |
| 6400 | 0.126100 | 0.076479 | 0.086352 |
| 6600 | 0.127100 | 0.077868 | 0.086153 |
| 6800 | 0.118000 | 0.083878 | 0.087676 |
| 7000 | 0.117600 | 0.085779 | 0.091054 |
| 7200 | 0.113600 | 0.084197 | 0.084233 |
| 7400 | 0.112000 | 0.078688 | 0.081319 |
| 7600 | 0.110200 | 0.082534 | 0.086087 |
| 7800 | 0.106400 | 0.077245 | 0.080988 |
| 8000 | 0.102300 | 0.077497 | 0.079332 |
| 8200 | 0.109500 | 0.079083 | 0.088339 |
| 8400 | 0.095900 | 0.079721 | 0.077809 |
| 8600 | 0.094700 | 0.079078 | 0.079730 |
| 8800 | 0.097400 | 0.078785 | 0.079200 |
| 9000 | 0.093200 | 0.077445 | 0.077015 |
| 9200 | 0.088700 | 0.078207 | 0.076617 |
| 9400 | 0.087200 | 0.078982 | 0.076485 |
| 9600 | 0.089900 | 0.081209 | 0.076021 |
| 9800 | 0.081900 | 0.078158 | 0.075757 |
| 10000 | 0.080200 | 0.078074 | 0.074498 |
| 10200 | 0.085000 | 0.078830 | 0.073373 |
| 10400 | 0.080400 | 0.078144 | 0.073373 |
| 10600 | 0.078200 | 0.077163 | 0.073902 |
| 10800 | 0.080900 | 0.076394 | 0.072446 |
| 11000 | 0.080700 | 0.075955 | 0.071585 |
| 11200 | 0.076800 | 0.077031 | 0.072313 |
| 11400 | 0.076300 | 0.077401 | 0.072777 |
| 11600 | 0.076700 | 0.076613 | 0.071916 |
| 11800 | 0.076000 | 0.076672 | 0.071916 |
| 12000 | 0.077200 | 0.076490 | 0.070989 |
| 12200 | 0.076200 | 0.076688 | 0.070856 |
| 12400 | 0.074400 | 0.076780 | 0.071055 |
| 12600 | 0.076300 | 0.076768 | 0.071320 |
| 12800 | 0.077600 | 0.076727 | 0.071055 |
| 13000 | 0.077700 | 0.076714 | 0.071254 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id sammy786/wav2vec2-xlsr-tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test
```