|
04/16/2024 17:23:10 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False |
|
04/16/2024 17:23:10 - INFO - __main__ - Training/evaluation parameters DistillationTrainingArguments( |
|
_n_gpu=1, |
|
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}, |
|
adafactor=False, |
|
adam_beta1=0.9, |
|
adam_beta2=0.999, |
|
adam_epsilon=1e-08, |
|
auto_find_batch_size=False, |
|
bf16=False, |
|
bf16_full_eval=False, |
|
data_seed=None, |
|
dataloader_drop_last=False, |
|
dataloader_num_workers=4, |
|
dataloader_persistent_workers=False, |
|
dataloader_pin_memory=True, |
|
dataloader_prefetch_factor=None, |
|
ddp_backend=None, |
|
ddp_broadcast_buffers=None, |
|
ddp_bucket_cap_mb=None, |
|
ddp_find_unused_parameters=None, |
|
ddp_timeout=7200, |
|
debug=[], |
|
deepspeed=None, |
|
disable_tqdm=False, |
|
dispatch_batches=None, |
|
do_eval=True, |
|
do_predict=False, |
|
do_train=True, |
|
dtype=bfloat16, |
|
eval_accumulation_steps=None, |
|
eval_delay=0, |
|
eval_steps=None, |
|
evaluation_strategy=IntervalStrategy.EPOCH, |
|
fp16=False, |
|
fp16_backend=auto, |
|
fp16_full_eval=False, |
|
fp16_opt_level=O1, |
|
freeze_lm_head=False, |
|
fsdp=[], |
|
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, |
|
fsdp_min_num_params=0, |
|
fsdp_transformer_layer_cls_to_wrap=None, |
|
full_determinism=False, |
|
generation_config=None, |
|
generation_max_length=None, |
|
generation_num_beams=None, |
|
gradient_accumulation_steps=1, |
|
gradient_checkpointing=False, |
|
gradient_checkpointing_kwargs=None, |
|
greater_is_better=None, |
|
group_by_length=False, |
|
half_precision_backend=auto, |
|
hub_always_push=False, |
|
hub_model_id=None, |
|
hub_private_repo=False, |
|
hub_strategy=HubStrategy.EVERY_SAVE, |
|
hub_token=<HUB_TOKEN>, |
|
ignore_data_skip=False, |
|
include_inputs_for_metrics=False, |
|
include_num_input_tokens_seen=False, |
|
include_tokens_per_second=False, |
|
jit_mode_eval=False, |
|
kl_weight=1.0, |
|
label_names=None, |
|
label_smoothing_factor=0.0, |
|
learning_rate=0.0003, |
|
length_column_name=length, |
|
load_best_model_at_end=False, |
|
local_rank=0, |
|
log_level=passive, |
|
log_level_replica=warning, |
|
log_on_each_node=True, |
|
logging_dir=./runs/Apr16_17-23-01_ip-26-0-164-187, |
|
logging_first_step=False, |
|
logging_nan_inf_filter=True, |
|
logging_steps=25, |
|
logging_strategy=IntervalStrategy.STEPS, |
|
lr_scheduler_kwargs={}, |
|
lr_scheduler_type=SchedulerType.LINEAR, |
|
max_grad_norm=1.0, |
|
max_steps=50000, |
|
metric_for_best_model=None, |
|
mp_parameters=, |
|
neftune_noise_alpha=None, |
|
no_cuda=False, |
|
num_train_epochs=3.0, |
|
optim=OptimizerNames.ADAMW_TORCH, |
|
optim_args=None, |
|
optim_target_modules=None, |
|
output_dir=./, |
|
output_router_logits=True, |
|
overwrite_output_dir=True, |
|
past_index=-1, |
|
per_device_eval_batch_size=8, |
|
per_device_train_batch_size=8, |
|
predict_with_generate=False, |
|
prediction_loss_only=False, |
|
push_to_hub=False, |
|
push_to_hub_model_id=None, |
|
push_to_hub_organization=None, |
|
push_to_hub_token=<PUSH_TO_HUB_TOKEN>, |
|
ray_scope=last, |
|
remove_unused_columns=True, |
|
report_to=['wandb'], |
|
resume_from_checkpoint=None, |
|
run_name=./, |
|
save_on_each_node=False, |
|
save_only_model=False, |
|
save_safetensors=True, |
|
save_steps=500, |
|
save_strategy=IntervalStrategy.EPOCH, |
|
save_total_limit=1, |
|
seed=42, |
|
skip_memory_metrics=True, |
|
sortish_sampler=False, |
|
split_batches=None, |
|
temperature=2.0, |
|
tf32=None, |
|
torch_compile=False, |
|
torch_compile_backend=None, |
|
torch_compile_mode=None, |
|
torchdynamo=None, |
|
tpu_metrics_debug=False, |
|
tpu_num_cores=None, |
|
use_cpu=False, |
|
use_ipex=False, |
|
use_legacy_prediction_loop=False, |
|
use_mps_device=False, |
|
warmup_ratio=0.0, |
|
warmup_steps=500, |
|
weight_decay=0.0, |
|
) |
|
Combining datasets...: 0%| | 0/8 [00:00<?, ?it/s] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 101885.93it/s] |
|
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 2253.19it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 94019.27it/s] |
|
|
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 138.64it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 97668.14it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 96175.12it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43/43 [00:00<00:00, 414.13it/s] |
|
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43/43 [00:00<00:00, 2036.64it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 152.49it/s] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 139/139 [00:00<00:00, 322460.32it/s] |
|
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 138/138 [00:00<00:00, 2441.33it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 158.30it/s] |
|
Resolving data files: 89%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββ | 16/18 [00:00<00:00, 141.58it/s] |
|
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 117/117 [00:00<00:00, 2419.04it/s] |
|
Combining datasets...: 88%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββ | 7/8 [00:24<00:03, 3.60s/it] |
|
|
|
Combining datasets...: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 8/8 [00:30<00:00, 3.82s/it] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 104134.44it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 98176.17it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 93553.25it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 90851.35it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 98560.67it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 99996.65it/s] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43/43 [00:00<00:00, 183287.67it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 95325.09it/s] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 139/139 [00:00<00:00, 366902.62it/s] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 103705.32it/s] |
|
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 118/118 [00:00<00:00, 308174.27it/s] |
|
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 18/18 [00:00<00:00, 85211.59it/s] |
|
loading configuration file config.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/config.json |
|
Model config MistralConfig { |
|
"_name_or_path": "sanchit-gandhi/Mistral-7B-v0.1-6-layer", |
|
"architectures": [ |
|
"MistralForCausalLM" |
|
], |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 1, |
|
"eos_token_id": 2, |
|
"hidden_act": "silu", |
|
"hidden_size": 4096, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 14336, |
|
"max_position_embeddings": 32768, |
|
"model_type": "mistral", |
|
"num_attention_heads": 32, |
|
"num_hidden_layers": 6, |
|
"num_key_value_heads": 8, |
|
"rms_norm_eps": 1e-05, |
|
"rope_theta": 10000.0, |
|
"sliding_window": 4096, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "float32", |
|
"transformers_version": "4.40.0.dev0", |
|
"use_cache": true, |
|
"vocab_size": 32000 |
|
} |
|
loading file tokenizer.model from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/tokenizer.model |
|
loading file tokenizer.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/tokenizer.json |
|
loading file added_tokens.json from cache at None |
|
loading file special_tokens_map.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/special_tokens_map.json |
|
loading file tokenizer_config.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/tokenizer_config.json |
|
loading configuration file config.json from cache at /fsx/sanchit/cache/models--mistralai--Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24/config.json |
|
Model config MistralConfig { |
|
"_name_or_path": "mistralai/Mistral-7B-v0.1", |
|
"architectures": [ |
|
"MistralForCausalLM" |
|
], |
|
"attention_dropout": 0.0, |
|
"bos_token_id": 1, |
|
"eos_token_id": 2, |
|
"hidden_act": "silu", |
|
"hidden_size": 4096, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 14336, |
|
"max_position_embeddings": 32768, |
|
"model_type": "mistral", |
|
"num_attention_heads": 32, |
|
"num_hidden_layers": 32, |
|
"num_key_value_heads": 8, |
|
"rms_norm_eps": 1e-05, |
|
"rope_theta": 10000.0, |
|
"sliding_window": 4096, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "bfloat16", |
|
"transformers_version": "4.40.0.dev0", |
|
"use_cache": true, |
|
"vocab_size": 32000 |
|
} |
|
The device_map was not initialized. Setting device_map to {'':torch.cuda.current_device()}. If you want to use the model for inference, please set device_map ='auto' |
|
loading weights file model.safetensors from cache at /fsx/sanchit/cache/models--mistralai--Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24/model.safetensors.index.json |
|
Downloading shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 1479.73it/s] |
|
Instantiating MistralForCausalLM model under default dtype torch.bfloat16. |
|
Generate config GenerationConfig { |
|
"bos_token_id": 1, |
|
"eos_token_id": 2 |
|
} |
|
|
|
Loading checkpoint shards: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:05<00:00, 2.99s/it] |
|
All model checkpoint weights were used when initializing MistralForCausalLM. |
|
All the weights of MistralForCausalLM were initialized from the model checkpoint at mistralai/Mistral-7B-v0.1. |
|
If your task is similar to the task the model of the checkpoint was trained on, you can already use MistralForCausalLM for predictions without further training. |
|
loading configuration file generation_config.json from cache at /fsx/sanchit/cache/models--mistralai--Mistral-7B-v0.1/snapshots/26bca36bde8333b5d7f72e9ed20ccda6a618af24/generation_config.json |
|
Generate config GenerationConfig { |
|
"bos_token_id": 1, |
|
"eos_token_id": 2 |
|
} |
|
loading weights file model.safetensors from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/model.safetensors.index.json |
|
Downloading shards: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 1308.47it/s] |
|
Generate config GenerationConfig { |
|
"bos_token_id": 1, |
|
"eos_token_id": 2 |
|
} |
|
Loading checkpoint shards: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 4.66it/s] |
|
All model checkpoint weights were used when initializing MistralForCausalLM. |
|
All the weights of MistralForCausalLM were initialized from the model checkpoint at sanchit-gandhi/Mistral-7B-v0.1-6-layer. |
|
If your task is similar to the task the model of the checkpoint was trained on, you can already use MistralForCausalLM for predictions without further training. |
|
loading configuration file generation_config.json from cache at /fsx/sanchit/cache/models--sanchit-gandhi--Mistral-7B-v0.1-6-layer/snapshots/d4e2300e8038196385e9106614a4d7b6c5b70211/generation_config.json |
|
Generate config GenerationConfig { |
|
"bos_token_id": 1, |
|
"eos_token_id": 2 |
|
} |
|
tokenizer config file saved in ./tokenizer_config.json |
|
Special tokens file saved in ./special_tokens_map.json |
|
Configuration saved in ./config.json |
|
Configuration saved in ./generation_config.json |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess train dataset (num_proc=32): 100%|ββββββββββββββββββββββ| 31056744/31056744 [54:46<00:00, 9450.26 examples/s] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
filtering train dataset (num_proc=32): 100%|ββββββββββββββββββββββ| 31056744/31056744 [05:21<00:00, 96735.06 examples/s] |
|
04/16/2024 18:24:47 - INFO - __main__ - max_steps is given, it will override any value given in num_train_epochs |
|
04/16/2024 18:25:15 - INFO - __main__ - ***** Running training ***** |
|
04/16/2024 18:25:15 - INFO - __main__ - Num examples = 3200000 |
|
04/16/2024 18:25:15 - INFO - __main__ - Num epochs = 1 |
|
04/16/2024 18:25:15 - INFO - __main__ - Instantaneous batch size per device = 8 |
|
04/16/2024 18:25:15 - INFO - __main__ - Gradient accumulation steps = 1 |
|
04/16/2024 18:25:15 - INFO - __main__ - Total train batch size (w. parallel & distributed) = 64 |
|
04/16/2024 18:25:15 - INFO - __main__ - Total optimization steps = 50000 |
|
|
|
Train steps ... : 0%| | 1/50000 [00:10<140:57:09, 10.15s/it]Traceback (most recent call last): |
|
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1474, in <module> |
|
main() |
|
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1326, in main |
|
loss, train_metric = train_step(batch, temperature=training_args.temperature) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1211, in train_step |
|
kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1183, in kl_divergence |
|
divergence = kl_loss(log_predicted_distribution, target_distribution) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1527, in _wrapped_call_impl |
|
return self._call_impl(*args, **kwargs) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1536, in _call_impl |
|
return forward_call(*args, **kwargs) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/loss.py", line 470, in forward |
|
return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/functional.py", line 2990, in kl_div |
|
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.95 GiB. GPU |
|
[rank0]: Traceback (most recent call last): |
|
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1474, in <module> |
|
[rank0]: main() |
|
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1326, in main |
|
[rank0]: loss, train_metric = train_step(batch, temperature=training_args.temperature) |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1211, in train_step |
|
[rank0]: kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2 |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: File "/fsx/sanchit/mistral-debug-4bit/run_distillation.py", line 1183, in kl_divergence |
|
[rank0]: divergence = kl_loss(log_predicted_distribution, target_distribution) |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1527, in _wrapped_call_impl |
|
[rank0]: return self._call_impl(*args, **kwargs) |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1536, in _call_impl |
|
[rank0]: return forward_call(*args, **kwargs) |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/modules/loss.py", line 470, in forward |
|
[rank0]: return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target) |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: File "/fsx/sanchit/miniconda3/envs/venv/lib/python3.11/site-packages/torch/nn/functional.py", line 2990, in kl_div |
|
[rank0]: reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target) |
|
[rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 1.95 GiB. GPU |