|
--- |
|
language: |
|
- en |
|
tags: |
|
- automatic-speech-recognition |
|
datasets: |
|
- LIUM/tedlium |
|
license: cc-by-4.0 |
|
metrics: |
|
- name: Dev WER |
|
type: wer |
|
value: 9.0 |
|
- name: Test WER |
|
type: wer |
|
value: 6.4 |
|
--- |
|
|
|
## Wav2Vec2-2-Bart-Large-Tedlium |
|
This model is a sequence-2-sequence (seq2seq) model trained on the [TEDLIUM](https://huggingface.co/datasets/LIUM/tedlium) corpus (release 3). |
|
|
|
It combines a speech encoder with a text decoder to perform automatic speech recognition. The encoder weights are initialised with the [Wav2Vec2 LV-60k](https://huggingface.co/facebook/wav2vec2-large-lv60) checkpoint from [@facebook](https://huggingface.co/facebook). The decoder weights are initialised with the [Bart large](https://huggingface.co/facebook/bart-large) checkpoint from [@facebook](https://huggingface.co/facebook). |
|
|
|
When using the model, make sure that your speech input is sampled at 16Khz. |
|
|
|
The model achieves a word error rate (WER) of 9.0% on the dev set and 6.4% on the test set. [Training logs](https://wandb.ai/sanchit-gandhi/tedlium/runs/1w6frnel?workspace=user-sanchit-gandhi) document the training and evaluation progress over 50k steps of fine-tuning. |
|
|
|
# Usage |
|
To transcribe audio files the model can be used as a standalone acoustic model as follows: |
|
```python |
|
from transformers import AutoProcessor, SpeechEncoderDecoderModel |
|
from datasets import load_dataset |
|
import torch |
|
|
|
# load model and processor |
|
processor = AutoProcessor.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium") |
|
model = SpeechEncoderDecoderModel.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium") |
|
|
|
# load dummy dataset |
|
ds = load_dataset("sanchit-gandhi/tedlium_dummy", split="validation") |
|
|
|
# process audio inputs |
|
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1 |
|
|
|
# run inference (greedy search) |
|
generated = model.generate(input_values) |
|
|
|
# decode |
|
decoded = processor.batch_decode(generated, skip_special_tokens=True) |
|
print("Target: ", ds["text"][0]) |
|
print("Transcription: ", decoded[0]) |
|
``` |
|
|
|
## Evaluation |
|
|
|
This code snippet shows how to evaluate **Wav2Vec2-Large-Tedlium** on the TEDLIUM test data. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoProcessor, SpeechEncoderDecoderModel |
|
import torch |
|
from jiwer import wer |
|
|
|
tedlium_eval = load_dataset("LIUM/tedlium", "release3", split="test") |
|
|
|
def filter_ds(text): |
|
return text != "ignore_time_segment_in_scoring" |
|
|
|
# remove samples ignored from scoring |
|
tedlium_eval = tedlium_eval.map(filter_ds, input_columns=["text"]) |
|
|
|
model = SpeechEncoderDecoderModel.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium").to("cuda") |
|
processor = AutoProcessor.from_pretrained("sanchit-gandhi/wav2vec2-2-bart-large-tedlium") |
|
|
|
gen_kwargs = { |
|
"max_length": 200, |
|
"num_beams": 5, |
|
"length_penalty": 1.2 |
|
} |
|
|
|
def map_to_pred(batch): |
|
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values |
|
with torch.no_grad(): |
|
generated = model.generate(input_values.to("cuda"), **gen_kwargs) |
|
decoded = processor.batch_decode(generated, skip_special_tokens=True) |
|
batch["transcription"] = decoded[0] |
|
return batch |
|
|
|
result = tedlium_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"]) |
|
print("WER:", wer(result["text"], result["transcription"])) |
|
``` |