augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta-v3
This model is a fine-tuned version of distilbert/distilroberta-base on the these datasets:
- GoEmotions
- sem_eval_2018_task_1 (English)
- Emotion Detection from Text - Pashupati Gupta
- Emotions dataset for NLP - praveengovi It has also been data augmented using TextAttack. On top of the (first version)[https://huggingface.co/paradoxmaske/augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta] of the model, V3 added more data augmentation
- EasyDataAugmenter on all labels except labels with a lot of examples [neutral (27), sadness (25), joy (17), love (18), anger (2)].
- CharSwapAugmenter on labels with very few examples compared to others: relief (23), confusion (6), disappointment (9), realization (22), caring (5), excitement (13), desire (8), remorse (24), embarrassment (12), nervousness (19), pride (21), grief (16).
It achieves the following results on the evaluation set:
- Loss: 0.0822
- Micro Precision: 0.6806
- Micro Recall: 0.5843
- Micro F1: 0.6288
- Macro Precision: 0.5709
- Macro Recall: 0.4553
- Macro F1: 0.4950
- Weighted Precision: 0.6654
- Weighted Recall: 0.5843
- Weighted F1: 0.6196
- Hamming Loss: 0.0293
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Weighted Precision | Weighted Recall | Weighted F1 | Hamming Loss |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 18454 | 0.0800 | 0.7272 | 0.4822 | 0.5799 | 0.6082 | 0.3841 | 0.4436 | 0.7271 | 0.4822 | 0.5609 | 0.0297 |
No log | 2.0 | 36908 | 0.0780 | 0.6895 | 0.5674 | 0.6225 | 0.5850 | 0.4612 | 0.4999 | 0.6800 | 0.5674 | 0.6109 | 0.0293 |
No log | 3.0 | 55362 | 0.0822 | 0.6806 | 0.5843 | 0.6288 | 0.5709 | 0.4553 | 0.4950 | 0.6654 | 0.5843 | 0.6196 | 0.0293 |
Test results
Label | Precision | Recall | F1-Score | Support |
---|---|---|---|---|
admiration | 0.61 | 0.66 | 0.64 | 504 |
amusement | 0.73 | 0.83 | 0.78 | 264 |
anger | 0.79 | 0.67 | 0.72 | 1585 |
annoyance | 0.39 | 0.20 | 0.26 | 320 |
approval | 0.44 | 0.31 | 0.37 | 351 |
caring | 0.38 | 0.29 | 0.33 | 135 |
confusion | 0.43 | 0.42 | 0.43 | 153 |
curiosity | 0.47 | 0.45 | 0.46 | 284 |
desire | 0.51 | 0.30 | 0.38 | 83 |
disappointment | 0.28 | 0.20 | 0.23 | 151 |
disapproval | 0.41 | 0.30 | 0.35 | 267 |
disgust | 0.71 | 0.60 | 0.65 | 1222 |
embarrassment | 0.43 | 0.27 | 0.33 | 37 |
excitement | 0.40 | 0.38 | 0.39 | 103 |
fear | 0.78 | 0.74 | 0.76 | 787 |
gratitude | 0.93 | 0.88 | 0.91 | 352 |
grief | 0.50 | 0.17 | 0.25 | 6 |
joy | 0.88 | 0.76 | 0.81 | 2298 |
love | 0.69 | 0.61 | 0.65 | 1305 |
nervousness | 0.39 | 0.30 | 0.34 | 23 |
optimism | 0.70 | 0.58 | 0.64 | 1329 |
pride | 0.62 | 0.31 | 0.42 | 16 |
realization | 0.32 | 0.16 | 0.21 | 145 |
relief | 0.19 | 0.15 | 0.17 | 160 |
remorse | 0.61 | 0.75 | 0.67 | 56 |
sadness | 0.75 | 0.66 | 0.71 | 2212 |
surprise | 0.49 | 0.36 | 0.42 | 572 |
neutral | 0.65 | 0.54 | 0.59 | 2668 |
Micro Avg | 0.70 | 0.60 | 0.64 | 17388 |
Macro Avg | 0.55 | 0.46 | 0.49 | 17388 |
Weighted Avg | 0.69 | 0.60 | 0.64 | 17388 |
Samples Avg | 0.64 | 0.61 | 0.61 | 17388 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.21.0
- Downloads last month
- 61
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sangkm/augmented-go-emotions-plus-other-datasets-fine-tuned-distilroberta-v3
Base model
distilbert/distilroberta-base