UDA-LIDI-Whisper-large-v3-turbo-ECU-911

This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8685
  • Wer: 40.1779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7289 1.0 91 0.6513 40.7708
0.4426 2.0 182 0.6487 40.1779
0.298 3.0 273 0.6699 40.1186
0.2058 4.0 364 0.6912 42.6285
0.1435 5.0 455 0.7103 39.6838
0.1022 6.0 546 0.7852 41.8379
0.0735 7.0 637 0.8315 40.6324
0.0568 8.0 728 0.8265 40.6126
0.0444 9.0 819 0.8538 40.0198
0.0399 9.8950 900 0.8685 40.1779

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
809M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for santyzenith/UDA-LIDI-Whisper-large-v3-turbo-ECU-911

Finetuned
(158)
this model