llama3-lora-openIE / README.md
sanxialiuzhan's picture
new
38656af
---
license: other
library_name: peft
tags:
- llama-factory
- lora
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model-index:
- name: sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sft
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the duie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0501
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.074 | 0.16 | 500 | 0.0621 |
| 0.0625 | 0.31 | 1000 | 0.0562 |
| 0.0581 | 0.47 | 1500 | 0.0543 |
| 0.0626 | 0.62 | 2000 | 0.0530 |
| 0.0597 | 0.78 | 2500 | 0.0524 |
| 0.0619 | 0.93 | 3000 | 0.0500 |
| 0.0445 | 1.09 | 3500 | 0.0499 |
| 0.0501 | 1.25 | 4000 | 0.0492 |
| 0.0487 | 1.4 | 4500 | 0.0490 |
| 0.0501 | 1.56 | 5000 | 0.0485 |
| 0.0516 | 1.71 | 5500 | 0.0472 |
| 0.0458 | 1.87 | 6000 | 0.0468 |
| 0.0381 | 2.03 | 6500 | 0.0482 |
| 0.037 | 2.18 | 7000 | 0.0506 |
| 0.0387 | 2.34 | 7500 | 0.0501 |
| 0.0363 | 2.49 | 8000 | 0.0498 |
| 0.0321 | 2.65 | 8500 | 0.0500 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2