google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b48

This model is a fine-tuned version of google/flan-t5-small on the esnli dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8720
  • Accuracy: 0.8622
  • F1: 0.8623
  • Bertscore F1: 0.9329
  • Rouge1: 0.6059
  • Rouge2: 0.3988
  • Rougel: 0.5475
  • Rougelsum: 0.5496
  • Bleu: 0.4047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Bertscore F1 Rouge1 Rouge2 Rougel Rougelsum Bleu
1.5084 0.17 2000 1.7484 0.8001 0.7997 0.9271 0.5768 0.3695 0.5209 0.5229 0.3703
1.2745 0.35 4000 1.8137 0.8113 0.8110 0.9304 0.5881 0.3804 0.5305 0.5325 0.3853
1.2287 0.52 6000 1.8358 0.8392 0.8403 0.9298 0.5828 0.3747 0.5282 0.5301 0.3778
1.1964 0.7 8000 1.8432 0.8430 0.8437 0.9326 0.5974 0.3905 0.5447 0.5462 0.3998
1.1674 0.87 10000 1.8567 0.8507 0.8485 0.9310 0.5947 0.3888 0.5383 0.5402 0.3892
1.1371 1.05 12000 1.8720 0.8622 0.8623 0.9329 0.6059 0.3988 0.5475 0.5496 0.4047

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sara-nabhani/google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b48

Evaluation results