sara-nabhani commited on
Commit
4e4a81a
·
1 Parent(s): fb60382

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - esnli
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - rouge
11
+ - bleu
12
+ model-index:
13
+ - name: google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b48
14
+ results:
15
+ - task:
16
+ name: Sequence-to-sequence Language Modeling
17
+ type: text2text-generation
18
+ dataset:
19
+ name: esnli
20
+ type: esnli
21
+ config: plain_text
22
+ split: validation
23
+ args: plain_text
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8622231253810201
28
+ - name: F1
29
+ type: f1
30
+ value: 0.8623314280769628
31
+ - name: Rouge1
32
+ type: rouge
33
+ value: 0.605873896307076
34
+ - name: Bleu
35
+ type: bleu
36
+ value: 0.40472213589689604
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # google-flan-t5-small-e-snli-generation-label_and_explanation-selected-b48
43
+
44
+ This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the esnli dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 1.8720
47
+ - Accuracy: 0.8622
48
+ - F1: 0.8623
49
+ - Bertscore F1: 0.9329
50
+ - Rouge1: 0.6059
51
+ - Rouge2: 0.3988
52
+ - Rougel: 0.5475
53
+ - Rougelsum: 0.5496
54
+ - Bleu: 0.4047
55
+
56
+ ## Model description
57
+
58
+ More information needed
59
+
60
+ ## Intended uses & limitations
61
+
62
+ More information needed
63
+
64
+ ## Training and evaluation data
65
+
66
+ More information needed
67
+
68
+ ## Training procedure
69
+
70
+ ### Training hyperparameters
71
+
72
+ The following hyperparameters were used during training:
73
+ - learning_rate: 0.001
74
+ - train_batch_size: 48
75
+ - eval_batch_size: 48
76
+ - seed: 42
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_ratio: 0.05
80
+ - num_epochs: 10
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Bertscore F1 | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
85
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------------:|:------:|:------:|:------:|:---------:|:------:|
86
+ | 1.5084 | 0.17 | 2000 | 1.7484 | 0.8001 | 0.7997 | 0.9271 | 0.5768 | 0.3695 | 0.5209 | 0.5229 | 0.3703 |
87
+ | 1.2745 | 0.35 | 4000 | 1.8137 | 0.8113 | 0.8110 | 0.9304 | 0.5881 | 0.3804 | 0.5305 | 0.5325 | 0.3853 |
88
+ | 1.2287 | 0.52 | 6000 | 1.8358 | 0.8392 | 0.8403 | 0.9298 | 0.5828 | 0.3747 | 0.5282 | 0.5301 | 0.3778 |
89
+ | 1.1964 | 0.7 | 8000 | 1.8432 | 0.8430 | 0.8437 | 0.9326 | 0.5974 | 0.3905 | 0.5447 | 0.5462 | 0.3998 |
90
+ | 1.1674 | 0.87 | 10000 | 1.8567 | 0.8507 | 0.8485 | 0.9310 | 0.5947 | 0.3888 | 0.5383 | 0.5402 | 0.3892 |
91
+ | 1.1371 | 1.05 | 12000 | 1.8720 | 0.8622 | 0.8623 | 0.9329 | 0.6059 | 0.3988 | 0.5475 | 0.5496 | 0.4047 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.27.4
97
+ - Pytorch 2.0.0+cu117
98
+ - Datasets 2.11.0
99
+ - Tokenizers 0.13.2