wav2vec2-large-xlsr-53-hungarian

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1748
  • Wer: 0.2997

The training and measured wer values ​​differ due to ignored characters.

Model Comparison with the previous best wav2vec model (eval on CV17)

Model name WER CER
jonatasgrosman/wav2vec2-large-xlsr-53-hungarian 46.199835320230555 9.85170677112479
sarpba/wav2vec2-large-xlsr-53-hungarian 17.27824914378453 3.151354554132789

Igonore characters on eval:

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

Intended uses & limitations

More information needed

Train & Evaluation

Trained with transformers example pytorch script

Eval:

import torch
import librosa
import re
import warnings
from datasets import load_dataset
import evaluate
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "hu"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

test_dataset = load_dataset("mozilla-foundation/common_voice_17_0", LANG_ID, split="test")

wer = evaluate.load("wer")  # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = evaluate.load("cer")  # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py


chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}")

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.7968 1.0 758 0.2848 0.5295
0.2547 2.0 1516 0.1908 0.4222
0.1929 3.0 2274 0.1753 0.4000
0.1532 4.0 3032 0.1558 0.3710
0.1297 5.0 3790 0.1512 0.3536
0.1167 6.0 4548 0.1574 0.3514
0.101 7.0 5306 0.1483 0.3374
0.0859 8.0 6064 0.1490 0.3299
0.0791 9.0 6822 0.1523 0.3250
0.0702 10.0 7580 0.1608 0.3192
0.0629 11.0 8338 0.1664 0.3146
0.0559 12.0 9096 0.1641 0.3103
0.0527 13.0 9854 0.1665 0.3063
0.0468 14.0 10612 0.1691 0.3011
0.0443 15.0 11370 0.1748 0.2998

Framework versions

  • Transformers 4.50.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
39
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sarpba/wav2vec2-large-xlsr-53-hungarian

Finetuned
(245)
this model

Evaluation results