File size: 6,916 Bytes
19600d1 b535fd2 19600d1 b535fd2 19600d1 b535fd2 19600d1 b535fd2 19600d1 ab89cf2 19600d1 b535fd2 19600d1 b535fd2 19600d1 808abe9 19c5ba6 7528e82 5697760 7528e82 c94e58f 19600d1 1f8b6e1 19600d1 3341d49 19600d1 96b3d14 3341d49 c16c93c 3341d49 98070aa 3341d49 19600d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
library_name: transformers
language:
- hu
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_17_0
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-53-hungarian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU
type: common_voice_17_0
config: hu
split: test
args: 'Config: hu, Training split: train+validation, Eval split: test'
metrics:
- name: Wer
type: wer
value: 0.1727824914378453
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-hungarian
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1748
- Wer: 0.2997
The training and measured wer values differ due to ignored characters.
## Model Comparison with the previous best wav2vec model (eval on CV17)
| Model name | WER | CER |
|:-----------------------------------------------:|:------------------:|:----------------:|
| jonatasgrosman/wav2vec2-large-xlsr-53-hungarian | 46.199835320230555 | 9.85170677112479 |
| sarpba/wav2vec2-large-xlsr-53-hungarian | 17.27824914378453 | 3.151354554132789 |
Igonore characters on eval:
```
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
```
## Intended uses & limitations
More information needed
## Train & Evaluation
Trained with transformers example pytorch script
Eval:
```
import torch
import librosa
import re
import warnings
from datasets import load_dataset
import evaluate
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "hu"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
test_dataset = load_dataset("mozilla-foundation/common_voice_17_0", LANG_ID, split="test")
wer = evaluate.load("wer") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = evaluate.load("cer") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}")
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.7968 | 1.0 | 758 | 0.2848 | 0.5295 |
| 0.2547 | 2.0 | 1516 | 0.1908 | 0.4222 |
| 0.1929 | 3.0 | 2274 | 0.1753 | 0.4000 |
| 0.1532 | 4.0 | 3032 | 0.1558 | 0.3710 |
| 0.1297 | 5.0 | 3790 | 0.1512 | 0.3536 |
| 0.1167 | 6.0 | 4548 | 0.1574 | 0.3514 |
| 0.101 | 7.0 | 5306 | 0.1483 | 0.3374 |
| 0.0859 | 8.0 | 6064 | 0.1490 | 0.3299 |
| 0.0791 | 9.0 | 6822 | 0.1523 | 0.3250 |
| 0.0702 | 10.0 | 7580 | 0.1608 | 0.3192 |
| 0.0629 | 11.0 | 8338 | 0.1664 | 0.3146 |
| 0.0559 | 12.0 | 9096 | 0.1641 | 0.3103 |
| 0.0527 | 13.0 | 9854 | 0.1665 | 0.3063 |
| 0.0468 | 14.0 | 10612 | 0.1691 | 0.3011 |
| 0.0443 | 15.0 | 11370 | 0.1748 | 0.2998 |
### Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
|