sarpba's picture
End of training
e3501a9 verified
|
raw
history blame
2.46 kB
metadata
library_name: transformers
language:
  - hu
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Hu 1944
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: sarpba/big_audio_data_hun_v2
          type: fleurs
          config: hu_hu
          split: None
          args: hu_hu
        metrics:
          - name: Wer
            type: wer
            value: 29.48142356294297

Whisper Base Hu 1944

This model is a fine-tuned version of openai/whisper-base on the sarpba/big_audio_data_hun_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7999
  • Wer Ortho: 33.8788
  • Wer: 29.4814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2523 0.3770 1000 0.9703 50.8988 46.7185
0.1859 0.7539 2000 0.8605 43.4345 39.4103
0.127 1.1309 3000 0.8378 40.6107 36.0040
0.1226 1.5079 4000 0.8153 38.9189 34.1842
0.1105 1.8848 5000 0.7847 36.6018 32.1979
0.0659 2.2618 6000 0.8298 35.3752 30.6379
0.0594 2.6388 7000 0.8132 34.8255 30.2280
0.0316 3.0157 8000 0.7999 33.8788 29.4814

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1