sarpba's picture
Update README.md
2d5825d verified
metadata
library_name: transformers
language:
  - hu
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Hungarian v1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: fleurs
          config: hu_hu
          split: test
          args: hu_hu
        metrics:
          - name: Wer
            type: wer
            value: 29.48142356294297

A kezdeti próbálkozásokat mind eltávolítottam, ez a jelenleg rendelkezésre álló eszközök és technológia által létrehozható legjobb magyar nyelvere finomhangolt whisper base modell. A többi magyar nyelvre finomhangolt base modelltől nagyságrendellek jobb eredményeket ér el minden adatkészleten!

Whisper Base Hungarian

Ez a modell a finomhangolt változata a openai/whisper-base -nek sarpba/big_audio_data_hun adatkészleten. Teszteredmények: ("google/fleurs", "hu_hu", "test") (képzés közbeni)

  • Loss: 0.7999
  • Wer Ortho: 33.8788
  • Wer: 29.4814

("mozilla-foundation/common_voice_17_0", "hu", "test")

  • WER: 25.58
  • CER: 6.34
  • Normalised WER: 21.18
  • Normalised CER: 5.31

Model description

Egyedi adatkészleten magyarta finomhangolt whisper base modell.

Intended uses & limitations

Üzleti cálra a modell a hozzájárulásom nélkül nem használható! Magán célra szabadon felhasználható a whisper esedeti licenszfeltételei szerint! Commercial use of this fine-tuning is not permitted!

Training and evaluation data

A modell hozzávetőleg 1200 óra gondosan válogatott magyar hanganyag alapján készült. A képzés során a tesztek a google/flerus-t használták a fejlődés ellenőrzésére. Alatta a mozilla-foundation/common_voice_17_0 eredménye.

Egyik adatkészlet sem szerepelt a képzési adatok közt, a modell tesztanyaggal nem fertőzött!

Training procedure

A képzés optimalizációja 3 napig futott a ray[tune] segítségével, a megtalált optimális képzési paraméterekkel a finomhangolás hozzávetőleg 17 órába telt!

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2523 0.3770 1000 0.9703 50.8988 46.7185
0.1859 0.7539 2000 0.8605 43.4345 39.4103
0.127 1.1309 3000 0.8378 40.6107 36.0040
0.1226 1.5079 4000 0.8153 38.9189 34.1842
0.1105 1.8848 5000 0.7847 36.6018 32.1979
0.0659 2.2618 6000 0.8298 35.3752 30.6379
0.0594 2.6388 7000 0.8132 34.8255 30.2280
0.0316 3.0157 8000 0.7999 33.8788 29.4814

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1