sarpba's picture
Update README.md
960d929 verified
metadata
library_name: transformers
language:
  - hu
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-tiny-finetuned-hu
    results: []

whisper-tiny-finetuned-hu

This model is a fine-tuned version of openai/whisper-tiny on the custom dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0418
  • Wer: 0.1249

Tests on another databases and compare another models (tiny, base, small, mediun, large)

model_name WER CER Norm WER Norm CER dataset batch_size language runtime
openai/whisper-large-v3 19.77 4.81 14.62 3.73 g_fleurs_test_hu 16 hu 617.91
openai/whisper-large-v3 21.81 5.81 18.07 4.95 CV_17_0_hu_test 16 hu 5676.63
openai/whisper-large-v2 24.04 6.24 19.26 5.15 g_fleurs_test_hu 16 hu 627.70
openai/whisper-large-v2 25.97 6.57 21.82 5.47 CV_17_0_hu_test 16 hu 9275.54
sarpba/whisper-base-hungarian_v1 27.65 6.77 23.53 5.77 CV_17_0_hu_test 32 hu 460.27
openai/whisper-large 30.13 8.93 26.20 8.04 CV_17_0_hu_test 16 hu 5909.03
---> sarpba/whisper-hu-tiny-finetuned 30.81 7.67 26.63 6.60 CV_17_0_hu_test 32 hu 328.25
openai/whisper-large 31.74 10.69 26.67 9.57 g_fleurs_test_hu 16 hu 711.97
openai/whisper-medium 33.04 9.93 27.97 8.34 g_fleurs_test_hu 32 hu 450.89
sarpba/whisper-base-hungarian_v1 37.16 11.96 30.60 10.43 g_fleurs_test_hu 32 hu 67.86
openai/whisper-medium 34.46 9.12 30.63 8.05 CV_17_0_hu_test 32 hu 3317.29
---> sarpba/whisper-hu-tiny-finetuned 40.32 12.85 33.99 11.33 g_fleurs_test_hu 32 hu 51.74
openai/whisper-small 50.07 15.69 45.54 14.40 g_fleurs_test_hu 32 hu 185.89
openai/whisper-small 55.67 16.77 52.20 15.62 CV_17_0_hu_test 32 hu 1398.06
openai/whisper-base 89.82 40.00 86.61 37.75 g_fleurs_test_hu 32 hu 118.69
openai/whisper-base 95.66 39.98 93.67 38.51 CV_17_0_hu_test 32 hu 779.32
openai/whisper-tiny 108.61 58.69 106.29 55.98 g_fleurs_test_hu 32 hu 90.65
openai/whisper-tiny 120.86 55.10 119.12 53.19 CV_17_0_hu_test 32 hu 597.92

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1078 0.0902 2000 0.1127 0.3073
0.0889 0.1804 4000 0.0899 0.2509
0.0766 0.2707 6000 0.0797 0.2238
0.0743 0.3609 8000 0.0733 0.2094
0.0691 0.4511 10000 0.0685 0.1963
0.0646 0.5413 12000 0.0650 0.1858
0.0602 0.6316 14000 0.0618 0.1759
0.0586 0.7218 16000 0.0594 0.1737
0.0553 0.8120 18000 0.0568 0.1665
0.055 0.9022 20000 0.0552 0.1635
0.0522 0.9925 22000 0.0531 0.1558
0.0415 1.0827 24000 0.0523 0.1555
0.0419 1.1729 26000 0.0512 0.1497
0.0406 1.2631 28000 0.0496 0.1483
0.042 1.3534 30000 0.0490 0.1464
0.0393 1.4436 32000 0.0473 0.1397
0.0395 1.5338 34000 0.0458 0.1373
0.0375 1.6240 36000 0.0448 0.1343
0.0372 1.7143 38000 0.0442 0.1328
0.036 1.8045 40000 0.0432 0.1286
0.0358 1.8947 42000 0.0424 0.1273
0.035 1.9849 44000 0.0418 0.1249

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.21.0