File size: 3,610 Bytes
0a0f1ad 04a446e b2fbb7d 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e 0a0f1ad 04a446e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
library_name: transformers
tags:
- bert
- ner
license: apache-2.0
datasets:
- eriktks/conll2003
base_model:
- google-bert/bert-base-uncased
pipeline_tag: token-classification
language:
- en
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- name: Precision
type: precision
value: 0.8992
verified: true
- name: Recall
type: recall
value: 0.9115
verified: true
- name: F1
type: f1
value: 0.0.9053
verified: true
- name: loss
type: loss
value: 0.040937
verified: true
---
# Model Card for Bert Named Entity Recognition
### Model Description
This is a chat fine-tuned version of `google-bert/bert-base-uncased`, designed to perform Named Entity Recognition on a text sentence imput.
- **Developed by:** [Sartaj](https://huggingface.co/sartajbhuvaji)
- **Finetuned from model:** `google-bert/bert-base-uncased`
- **Language(s):** English
- **License:** apache-2.0
- **Framework:** Hugging Face Transformers
### Model Sources
- **Repository:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)
- **Paper:** [BERT-paper](https://huggingface.co/papers/1810.04805)
## Uses
Model can be used to recognize Named Entities in text.
## Usage
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
model = AutoModelForTokenClassification.from_pretrained("sartajbhuvaji/bert-named-entity-recognition")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "My name is Wolfgang and I live in Berlin"
ner_results = nlp(example)
print(ner_results)
```
```json
[
{
"end": 19,
"entity": "B-PER",
"index": 4,
"score": 0.99633455,
"start": 11,
"word": "wolfgang"
},
{
"end": 40,
"entity": "B-LOC",
"index": 9,
"score": 0.9987465,
"start": 34,
"word": "berlin"
}
]
```
## Training Details
- **Dataset** : [eriktks/conll2003](https://huggingface.co/datasets/eriktks/conll2003)
| Abbreviation | Description |
|---|---|
| O | Outside of a named entity |
| B-MISC | Beginning of a miscellaneous entity right after another miscellaneous entity |
| I-MISC | Miscellaneous entity |
| B-PER | Beginning of a person's name right after another person's name |
| I-PER | Person's name |
| B-ORG | Beginning of an organization right after another organization |
| I-ORG | Organization |
| B-LOC | Beginning of a location right after another location |
| I-LOC | Location |
### Training Procedure
- Full Model Finetune
- Epochs : 5
#### Training Loss Curves
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6354695712edd0ed5dc46b04/vVra4giLk3EPjXo48Sbax.png)
## Trainer
- global_step: 4390
- training_loss: 0.040937909830132485
- train_runtime: 206.3611
- train_samples_per_second: 340.205
- train_steps_per_second: 21.273
- total_flos: 1702317283240608.0
- train_loss: 0.040937909830132485
- epoch: 5.0
## Evaluation
- Precision: 0.8992
- Recall: 0.9115
- F1 Score: 0.9053
### Classification Report
| Class | Precision | Recall | F1-Score | Support |
|---|---|---|---|---|
| LOC | 0.91 | 0.93 | 0.92 | 1668 |
| MISC | 0.76 | 0.81 | 0.78 | 702 |
| ORG | 0.87 | 0.88 | 0.88 | 1661 |
| PER | 0.98 | 0.97 | 0.97 | 1617 |
| **Micro Avg** | 0.90 | 0.91 | 0.91 | 5648 |
| **Macro Avg** | 0.88 | 0.90 | 0.89 | 5648 |
| **Weighted Avg** | 0.90 | 0.91 | 0.91 | 5648 |
- Evaluation Dataset : eriktks/conll2003
|