Fine-tuned Japanese Instruction Model

This is a fine-tuned version of the base model llm-jp/llm-jp-3-13b using the ichikara-instruction dataset.
The model has been fine-tuned for Japanese instruction-following tasks.


Model Information

Base Model

Fine-tuning Dataset

The dataset includes Japanese instruction-response pairs and has been tailored for Japanese instruction-following tasks.

関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)


Usage

1. Install Required Libraries

!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft

2. Load the Model and Libraries

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
import re

# Hugging Face Token (recommended to set via environment variable)
HF_TOKEN = "YOUR_HF_ACCESS_TOKEN"

# Model and adapter IDs
# base_model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a"
base_model_id = "llm-jp/llm-jp-3-13b"  # Base model
adapter_id = "sasakipeter/llm-jp-3-13b-finetune"

# QLoRA (4-bit quantization) configuration
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

3. Load the Base Model and LoRA Adapter

# Load base model with 4-bit quantization
model = AutoModelForCausalLM.from_pretrained(
    base_model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token=HF_TOKEN
)

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    base_model_id, 
    trust_remote_code=True, 
    token=HF_TOKEN
)

# Integrate LoRA adapter into the base model
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)
model.config.use_cache = False

4. Perform Inference on [elyza-tasks-100](https://huggingface.co/datasets/elyza/ELYZA-tasks-100)

# loading dataset
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

# execute inference
results = []
for data in tqdm(datasets):

    input_text = data["input"]

    prompt = f"""### 指示
    {input_text}
    ### 回答
    """

    tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
    attention_mask = torch.ones_like(tokenized_input)

    with torch.no_grad():
        outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
        )[0]
    output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

    results.append({"task_id": data["task_id"], "input": input_text, "output": output})

jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs-validation.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')

License

This model is released under the CC-BY-NC-SA 4.0 license.

  • Base Model: llm-jp/llm-jp-3-13b (Apache License 2.0)
  • Fine-Tuning Dataset: ichikara-instruction (CC-BY-NC-SA 4.0)

This Model License:
Due to the Share-Alike (SA) condition of the ichikara-instruction dataset, the fine-tuned model is licensed under CC-BY-NC-SA 4.0.
This means the model can only be used for non-commercial purposes, and any derivative works must adopt the same license.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for sasakipeter/llm-jp-3-13b-finetune

Finetuned
(1140)
this model