Uploaded model
- Developed by: satoyutaka
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
sample of use(python)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
モデルのロード
import torch from tqdm import tqdm import json
HF_TOKEN = "Hugging Face Token" #Hugging Face のAPIキーを入力(read)
model_name = "satoyutaka/llm-jp-3-13b-ftELZ-2" #作成したモデル名
量子化パラメータの設定
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
問題文の読み込み
datasets = []
with open("elyza-tasks-100-TV_0.jsonl", "r") as f: #ファイルを格納したパスに書き換えてください。
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
results = []
推論
from tqdm import tqdm
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
提出ファイルの作成
import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')
Model tree for satoyutaka/llm-jp-3-13b-ftELZ-2
Base model
llm-jp/llm-jp-3-13b