Visualize in Weights & Biases

hf_llama3_lora

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 5
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 640
  • total_eval_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
1.4042 0.1862 500 1.3990
1.3445 0.3723 1000 1.3608
1.291 0.5585 1500 1.3493
1.264 0.7446 2000 1.3381
1.2438 0.9308 2500 1.3257
1.2333 1.1169 3000 1.3242
1.2084 1.3031 3500 1.3167
1.2227 1.4892 4000 1.3178
1.2151 1.6754 4500 1.3092
1.2114 1.8615 5000 1.3060
1.1645 2.0477 5500 1.3068
1.1793 2.2338 6000 1.3026
1.1809 2.4200 6500 1.3014
1.1934 2.6061 7000 1.2935
1.175 2.7923 7500 1.2953
1.1629 2.9784 8000 1.2954
1.1559 3.1646 8500 1.2972

Framework versions

  • PEFT 0.9.0
  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for satyaalmasian/hf_llama3_lora

Adapter
(347)
this model