πŸ’§ Proteus-8B

Proteus-8B is a merge of the following models using Mergekit:

🧩 Configuration

tokenizer_source: union
embed_slerp: true
name: Proteus-8B
models:
  - model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.5
      weight: 0.4
  - model: NousResearch/Hermes-2-Theta-Llama-3-8B
    parameters:
      density: 0.5
      weight: 0.6
merge_method: dare_ties
base_model: NousResearch/Hermes-2-Theta-Llama-3-8B
parameters:
  int8_mask: true
dtype: bfloat16

Eval Results

Benchmark Average arc gsm8k hellaswag mmlu truthfulqa winogrande
openllm 70.67 63.48 78.77 82.94 64.71 56.71 77.43

Detailed Results: https://github.com/saucam/model_evals/blob/main/saucam/Proteus-8B/README.md

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "saucam/Proteus-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
14
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for saucam/Proteus-8B