Uploaded model
- Developed by: saucam
- License: apache-2.0
- Finetuned from model : google/gemma-7b
This is a finetuned version of gemma-7b on sarvamai/samvaad-hi-v1 hindi dataset using chatml format.
Inference
We can use unsloth for fast inference
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
from unsloth.chat_templates import get_chat_template
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "saucam/gemma-samvaad-7b", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = 2048,
dtype = None,
load_in_4bit = False,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
tokenizer = get_chat_template(
tokenizer,
chat_template = "chatml",
map_eos_token = True, # Maps <|im_end|> to </s> instead
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
messages = [
{"role": "user", "content": "(9+1)+(5+0). इसे 3 चरणों में हल करें."},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
).to("cuda")
outputs = model.generate(input_ids = inputs, max_new_tokens = 512, use_cache = True)
out = tokenizer.batch_decode(outputs)
print(out)
['<bos><|im_start|>user\n(9+1)+(5+0). इसे 3 चरणों में हल करें.<|im_end|>\n
<|im_start|>assistant\n(9+1)+(5+0) को 3 चरणों में हल करने के लिए, हम इसे छोटे भागों में विभाजित कर सकते हैं। पहले चरण में, हम 9 को 1 से जोड़ते हैं, जो 10 देता है। दूसरे चरण में, हम 5 को 0 से जोड़ते हैं, जो 5 देता है। तीसरे चरण में, हम 10 को 5 से जोड़ते हैं, जो 15 देता है। इसलिए, (9+1)+(5+0) का परिणाम 15 है।<|im_end|>
This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for saucam/gemma-samvaad-7b
Base model
google/gemma-7b