metadata
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 109.92 +/- 16.87
name: mean_reward
verified: false
Q-Learning Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1 .
Usage
model = load_from_hub(repo_id="sayby/Reinforce-CartPole-v1", filename="model.pt")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["eval_seed"])