Segformer B3 fine-tuned for clothes segmentation

SegFormer model fine-tuned on ATR dataset for clothes segmentation but can also be used for human segmentation. The dataset on hugging face is called "mattmdjaga/human_parsing_dataset".

NEW - Training code. Right now it only contains the pure code with some comments, but soon I'll add a colab notebook version and a blog post with it to make it more friendly.

from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn

processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer_b3_clothes")
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer_b3_clothes")

url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"

image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")

outputs = model(**inputs)
logits = outputs.logits.cpu()

upsampled_logits = nn.functional.interpolate(
    logits,
    size=image.size[::-1],
    mode="bilinear",
    align_corners=False,
)

pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)

Labels: 0: "Background", 1: "Hat", 2: "Hair", 3: "Sunglasses", 4: "Upper-clothes", 5: "Skirt", 6: "Pants", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 11: "Face", 12: "Left-leg", 13: "Right-leg", 14: "Left-arm", 15: "Right-arm", 16: "Bag", 17: "Scarf"

Evaluation

Label Index Label Name Category Accuracy Category IoU
0 Background 0.99 0.99
1 Hat 0.73 0.68
2 Hair 0.91 0.82
3 Sunglasses 0.73 0.63
4 Upper-clothes 0.87 0.78
5 Skirt 0.76 0.65
6 Pants 0.90 0.84
7 Dress 0.74 0.55
8 Belt 0.35 0.30
9 Left-shoe 0.74 0.58
10 Right-shoe 0.75 0.60
11 Face 0.92 0.85
12 Left-leg 0.90 0.82
13 Right-leg 0.90 0.81
14 Left-arm 0.86 0.74
15 Right-arm 0.82 0.73
16 Bag 0.91 0.84
17 Scarf 0.63 0.29

Overall Evaluation Metrics:

  • Evaluation Loss: 0.15
  • Mean Accuracy: 0.80
  • Mean IoU: 0.69

License

The license for this model can be found here.

BibTeX entry and citation info

@article{DBLP:journals/corr/abs-2105-15203,
  author    = {Enze Xie and
               Wenhai Wang and
               Zhiding Yu and
               Anima Anandkumar and
               Jose M. Alvarez and
               Ping Luo},
  title     = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
               Transformers},
  journal   = {CoRR},
  volume    = {abs/2105.15203},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.15203},
  eprinttype = {arXiv},
  eprint    = {2105.15203},
  timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Downloads last month
8,884
Safetensors
Model size
47.2M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sayeed99/segformer_b3_clothes

Space using sayeed99/segformer_b3_clothes 1