araffin commited on
Commit
707e6a6
·
1 Parent(s): 063d46e

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Acrobot-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -79.80 +/- 5.44
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Acrobot-v1
20
+ type: Acrobot-v1
21
+ ---
22
+
23
+ # **A2C** Agent playing **Acrobot-v1**
24
+ This is a trained model of a **A2C** agent playing **Acrobot-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo a2c --env Acrobot-v1 -orga sb3 -f logs/
41
+ python enjoy.py --algo a2c --env Acrobot-v1 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo a2c --env Acrobot-v1 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo a2c --env Acrobot-v1 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('ent_coef', 0.0),
54
+ ('n_envs', 16),
55
+ ('n_timesteps', 500000.0),
56
+ ('normalize', True),
57
+ ('policy', 'MlpPolicy'),
58
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
59
+ ```
a2c-Acrobot-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76c983f2f42c846ea1dd1ce4b7df4f0f2f7f1846c1a662847f50e5ed296972e8
3
+ size 100694
a2c-Acrobot-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
a2c-Acrobot-v1/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e104e1950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e104e19e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e104e1a70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e104e1b00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5e104e1b90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5e104e1c20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e104e1cb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5e104e1d40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e104e1dd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e104e1e60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e104e1ef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5e10533840>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
25
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
26
+ "optimizer_kwargs": {
27
+ "alpha": 0.99,
28
+ "eps": 1e-05,
29
+ "weight_decay": 0
30
+ }
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAv9sPScHWMeLBlHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD/bD0lB1jHiQZR0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSwaFlHViLg==",
35
+ "dtype": "float32",
36
+ "low": "[ -1. -1. -1. -1. -12.566371 -28.274334]",
37
+ "high": "[ 1. 1. 1. 1. 12.566371 28.274334]",
38
+ "bounded_below": "[ True True True True True True]",
39
+ "bounded_above": "[ True True True True True True]",
40
+ "_np_random": null,
41
+ "_shape": [
42
+ 6
43
+ ]
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
47
+ ":serialized:": "gASVTQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoB4wHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAU1wAoWUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiiULACQAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlHSUYowDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
48
+ "n": 3,
49
+ "dtype": "int64",
50
+ "_np_random": "RandomState(MT19937)",
51
+ "_shape": []
52
+ },
53
+ "n_envs": 16,
54
+ "num_timesteps": 500000,
55
+ "_total_timesteps": 500000,
56
+ "_num_timesteps_at_start": 0,
57
+ "seed": 0,
58
+ "action_noise": null,
59
+ "start_time": 1614619329.0815487,
60
+ "learning_rate": 0.0007,
61
+ "tensorboard_log": null,
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": null,
68
+ "_last_original_obs": {
69
+ ":type:": "<class 'numpy.ndarray'>",
70
+ ":serialized:": "gASVDQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLBoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKAAQAAEA9/P7tzr70X/X8/MWgavFDSvjvoUDK8vOt/P3i1y7xMzX4/f+fFPSErDDxQdqQ9gcJ+Pw5ZyT2a538/p4TfvPfeUr3ehBS9JMd+Pzbgx73U2X8/ysYLvdBL/by83MI9Y6B/PwMtXb0p938/aoqGPI+SiD3vnoG9WfZ/P12bjDzYsn8/GrJGvR5WR72Osg67hv5/PwwC3LtuwH8/sl00vdlpoj1tpqK8mrl/P6LMPb2nsH8/7H5JvY0uqLxQVBI9+St/P3abpL1r/H8/K1IrvJdLib1ghK89osR/P6hOLr3f/X8/rxsEvDGvvb0shkG9x9x+PybbwL2ISH8/ZSOZPYlWmL13qHg8lth+P4g8wr2+kH8/S5JuPb4SWz3CHa69hOJ+P33zvj155X4/Jfa9vdQKc70uH2G96Gd/P3Byi716YX8/GFyOvXczTT3iaFQ9Adh+P3Ntwr1PFX8/0iqtvRVihj1PTU49ed5/Pw4BAz20w34/1PfIvbb8mD24/oi8lHSUYi4="
71
+ },
72
+ "_episode_num": 0,
73
+ "use_sde": false,
74
+ "sde_sample_freq": -1,
75
+ "_current_progress_remaining": 0.0,
76
+ "ep_info_buffer": {
77
+ ":type:": "<class 'collections.deque'>",
78
+ ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFFAAAAAAACMAWyUS0aMAXSUR0BxI836yjYadX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BxI+AiFCb+dX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BxJI0XP7emdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxJcfms/6gdX2UKGgGR8BkgAAAAAAAaAdLpWgIR0BxJZqgyuZDdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxJTzf779AdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxJsfq5byIdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxJ2GoJiRXdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxJ8RtgrpadX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxJxZvDP4VdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxKGIInjQzdX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BxKSHmA9V4dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxKYFOfukUdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BxKQ1tO2y+dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxLRnK4hECdX2UKGgGR8BSgAAAAAAAaAdLS2gIR0BxLRyimEXddX2UKGgGR8BVgAAAAAAAaAdLV2gIR0BxLpQGfPHDdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxLzg9/z8QdX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxL4oRZlnRdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BxL9wzch1UdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxL8qTbFjvdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxMNP69CeFdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxMTt8eCCjdX2UKGgGR8BXwAAAAAAAaAdLYGgIR0BxMZFc6eXidX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BxMbikwevIdX2UKGgGR8BQAAAAAAAAaAdLQWgIR0BxMYYKpkwwdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BxMioqCpWFdX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BxMtpnHvMKdX2UKGgGR8BWQAAAAAAAaAdLWmgIR0BxNDUz9CNTdX2UKGgGR8BYAAAAAAAAaAdLYWgIR0BxNQv+OwPidX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxNszsQd0adX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BxN86uGKyfdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxOA+FDfFadX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxOB07r9l3dX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxOLugHu7ZdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxOTjo6jnFdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxOkpPRArydX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxOZfUnXumdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxOm/9Hc1wdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxO16gM+eOdX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BxO9RaX8fndX2UKGgGR8BVAAAAAAAAaAdLVWgIR0BxPJFMIu5CdX2UKGgGR8BawAAAAAAAaAdLbGgIR0BxPn90ihWYdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxPf/VAiV0dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxPtbiZOSGdX2UKGgGR8BPAAAAAAAAaAdLP2gIR0BxQHwiJO32dX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxQGMju8brdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxQYI3R5TqdX2UKGgGR8BeQAAAAAAAaAdLemgIR0BxQby+Yc//dX2UKGgGR8BUwAAAAAAAaAdLVGgIR0BxQm2x6fJ4dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxQkQUYbbUdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxQ/zK9wm3dX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxRG3iJfpmdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxRPlU6xPgdX2UKGgGR8BZwAAAAAAAaAdLaGgIR0BxRNeiSJTEdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxRliTdLxqdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxRmEHt4RmdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxR5xkupS8dX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BxSVZdOZb7dX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxSPrLQokSdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxSV40Mw10dX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxSf8tPHktdX2UKGgGR8BRAAAAAAAAaAdLRWgIR0BxSsBS1maqdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxS3VlPJq7dX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxTAtQKrq/dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxTR7AtWdVdX2UKGgGR8BVwAAAAAAAaAdLWGgIR0BxTUcZLqUvdX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxTvz06HTJdX2UKGgGR8BUAAAAAAAAaAdLUWgIR0BxTsH5aePJdX2UKGgGR8BWwAAAAAAAaAdLXGgIR0BxTz7k4m1IdX2UKGgGR8BSQAAAAAAAaAdLSmgIR0BxT3VSXMQmdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxTvqmj0tidX2UKGgGR8BPgAAAAAAAaAdLQGgIR0BxUT6nBLwndX2UKGgGR8BUQAAAAAAAaAdLUmgIR0BxUaInBtUGdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxUZPHktEodX2UKGgGR8BpQAAAAAAAaAdLy2gIR0BxUisOoYNzdX2UKGgGR8BVQAAAAAAAaAdLVmgIR0BxVKC6H0sfdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxVI9W6shgdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxVPQyAQQMdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BxVgR5C4SZdX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxVfWqcVgydX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxWG/8EV32dX2UKGgGR8BgAAAAAAAAaAdLgWgIR0BxWQ2bXpW4dX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BxWTBYV6/qdX2UKGgGR8BTQAAAAAAAaAdLTmgIR0BxWI+6iCardX2UKGgGR8BdQAAAAAAAaAdLdmgIR0BxWoq8UVSGdX2UKGgGR8BWAAAAAAAAaAdLWWgIR0BxWl6Ww/xEdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxWpzeXRgJdX2UKGgGR8BRwAAAAAAAaAdLSGgIR0BxWu7K7qY7dX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxW7Qla8pTdX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxWw1baAWjdX2UKGgGR8BTgAAAAAAAaAdLT2gIR0BxW0fCAMDwdX2UKGgGR8BSAAAAAAAAaAdLSWgIR0BxXY1hsqJ/dX2UKGgGR8BTwAAAAAAAaAdLUGgIR0BxXm+SKWLQdX2UKGgGR8BTAAAAAAAAaAdLTWgIR0BxXnYwqRU4dX2UKGgGR8BRgAAAAAAAaAdLR2gIR0BxYdwyZa3adX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxYSeHzpX7dX2UKGgGR8BZAAAAAAAAaAdLZWgIR0BxYmC2+fyxdX2UKGgGR8BRQAAAAAAAaAdLRmgIR0BxYvci4axYdX2UKGgGR8BUgAAAAAAAaAdLU2gIR0BxY1Gy5Zr6dWUu"
79
+ },
80
+ "ep_success_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
83
+ },
84
+ "_n_updates": 6250,
85
+ "n_steps": 5,
86
+ "gamma": 0.99,
87
+ "gae_lambda": 1.0,
88
+ "ent_coef": 0.0,
89
+ "vf_coef": 0.5,
90
+ "max_grad_norm": 0.5,
91
+ "normalize_advantage": false,
92
+ "_last_dones": {
93
+ ":type:": "<class 'numpy.ndarray'>",
94
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
95
+ }
96
+ }
a2c-Acrobot-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a67e8238ceb6abb14daacea641fe656472d0d59e559c61138114136992aeddf
3
+ size 41281
a2c-Acrobot-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83b6ba19c28f34e7853b614e65ca7f8a91acdc4c178c7bfa442cbf0ab4ee6540
3
+ size 41921
a2c-Acrobot-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-Acrobot-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - a2c
4
+ - - env
5
+ - Acrobot-v1
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 951484142
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - n_envs
5
+ - 16
6
+ - - n_timesteps
7
+ - 500000.0
8
+ - - normalize
9
+ - true
10
+ - - policy
11
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0df1711a2d110b3a1d2c156ded33aa4a20c9acec405cd34b6740fa787c0d90a4
3
+ size 959040
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -79.8, "std_reward": 5.436910887627275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T17:17:37.640650"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:554547dc64c7457144f1a2d9efaff450b24fbb994c878cc65f5f252ce5be9e69
3
+ size 126539
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02d058f92fc52d04b8a9df488adb24abd2e0ae2f5499b92e4302b35166f46f5f
3
+ size 4761