Initial commit
Browse files- .gitattributes +2 -0
- README.md +70 -0
- a2c-Walker2DBulletEnv-v0.zip +3 -0
- a2c-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-Walker2DBulletEnv-v0/data +106 -0
- a2c-Walker2DBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-Walker2DBulletEnv-v0/policy.pth +3 -0
- a2c-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-Walker2DBulletEnv-v0/system_info.txt +7 -0
- args.yml +59 -0
- config.yml +33 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 809.75 +/- 376.19
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2DBulletEnv-v0
|
20 |
+
type: Walker2DBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **Walker2DBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **Walker2DBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo a2c --env Walker2DBulletEnv-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo a2c --env Walker2DBulletEnv-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo a2c --env Walker2DBulletEnv-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo a2c --env Walker2DBulletEnv-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('ent_coef', 0.0),
|
54 |
+
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
55 |
+
('gae_lambda', 0.9),
|
56 |
+
('gamma', 0.99),
|
57 |
+
('learning_rate', 'lin_0.00096'),
|
58 |
+
('max_grad_norm', 0.5),
|
59 |
+
('n_envs', 4),
|
60 |
+
('n_steps', 8),
|
61 |
+
('n_timesteps', 2000000.0),
|
62 |
+
('normalize', True),
|
63 |
+
('normalize_advantage', False),
|
64 |
+
('policy', 'MlpPolicy'),
|
65 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
66 |
+
('use_rms_prop', True),
|
67 |
+
('use_sde', True),
|
68 |
+
('vf_coef', 0.4),
|
69 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
70 |
+
```
|
a2c-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6f03e4f641df4c86839a1837534296efdc236bdeaecaac5a7c47bed4062a804
|
3 |
+
size 126066
|
a2c-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
a2c-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7eff12060950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eff120609e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eff12060a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eff12060b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7eff12060b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7eff12060c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eff12060cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7eff12060d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eff12060dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eff12060e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7eff12060ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7eff120b1840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASVXwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxeFlGgLiUNcAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgLiUNcAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgpiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLF4WUdWIu",
|
37 |
+
"dtype": "float32",
|
38 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
|
39 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf 1.]",
|
40 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
|
41 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
|
42 |
+
"_np_random": null,
|
43 |
+
"_shape": [
|
44 |
+
23
|
45 |
+
]
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
50 |
+
"dtype": "float32",
|
51 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
52 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
53 |
+
"bounded_below": "[ True True True True True True]",
|
54 |
+
"bounded_above": "[ True True True True True True]",
|
55 |
+
"_np_random": "RandomState(MT19937)",
|
56 |
+
"_shape": [
|
57 |
+
6
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": 0,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1614621243.1332874,
|
67 |
+
"learning_rate": {
|
68 |
+
":type:": "<class 'function'>",
|
69 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
70 |
+
},
|
71 |
+
"tensorboard_log": null,
|
72 |
+
"lr_schedule": {
|
73 |
+
":type:": "<class 'function'>",
|
74 |
+
":serialized:": "gASVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
75 |
+
},
|
76 |
+
"_last_obs": null,
|
77 |
+
"_last_episode_starts": null,
|
78 |
+
"_last_original_obs": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gASV/QEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLF4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUJwAQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC7kIU/AAAAAFXTfD8AAAAAm/OjPAAAAAAI5W8/AAAAABXAgj8AAAAAWjysvQAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFw8dz8AAAAAjsxxPwAAAABIPiu8AAAAAKZ8bj8AAAAAW19vPwAAAAAFcde9AAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAFTKFPwAAAADSo2w/AAAAAAtRRr0AAAAAF56APwAAAACYfmw/AAAAAJUiWT0AAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC8q4A/AAAAAEP0hD8AAAAA9i8NvAAAAAD/YYc/AAAAAI9rgT8AAAAAL9lRvQAAAAAAAAAAAAAAAAAAgD+UdJRiLg=="
|
81 |
+
},
|
82 |
+
"_episode_num": 0,
|
83 |
+
"use_sde": true,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": 0.0,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gASVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8pFWMju8eMAWyUTegDjAF0lEdAvKKNkK/mDHV9lChoBkdASITVe8f3e2gHSztoCEdAvKMjl90A93V9lChoBkdAjxZYsVclgWgHTegDaAhHQLymqRF7Uod1fZQoaAZHQFhG4FRpDeFoB0t/aAhHQLyn6f1pTMt1fZQoaAZHQI8UHGS6lLxoB03oA2gIR0C8qcq3iJfqdX2UKGgGR0BIRya3I+4caAdLRGgIR0C8qnUH+qBFdX2UKGgGR0CPCkJBPbfxaAdN6ANoCEdAvLlK3x4IKXV9lChoBkdAjww0wJw84mgHTegDaAhHQLy6b+5vtMR1fZQoaAZHQI8A0VtXPqtoB03oA2gIR0C8v3Oc+aBqdX2UKGgGR0CPKloQnQY2aAdN6ANoCEdAvMIfJRwZO3V9lChoBkdAjwNSwfQrtmgHTegDaAhHQLzDrBikO7R1fZQoaAZHQI8dhYxL0z1oB03oA2gIR0C8xMpezD4ydX2UKGgGR0CPJHzQNTcZaAdN6ANoCEdAvMmYZ75VO3V9lChoBkdAjy5DPOY6XGgHTegDaAhHQLzMKBPKuCB1fZQoaAZHQI8hGrELpiZoB03oA2gIR0C8zaQAlv61dX2UKGgGR0CPDLw1BMSLaAdN6ANoCEdAvM690+1SfnV9lChoBkdAjyx0Zm7J4mgHTegDaAhHQLziSTSLIgh1fZQoaAZHQI8iD0Bfa6BoB03oA2gIR0C85NeTibUgdX2UKGgGR0CPIc1l5GBnaAdN6ANoCEdAvOZRDE3sHHV9lChoBkdAU6oAdXDFZWgHS2JoCEdAvOdHp0OmSHV9lChoBkdAjxA7VBlcyGgHTegDaAhHQLznZzZ6D5F1fZQoaAZHQI8CvssxwhpoB03oA2gIR0C87DA6dUbUdX2UKGgGR0BX0mpIczZZaAdLcWgIR0C87U66BiCrdX2UKGgGR0BFdYEwFkhBaAdLL2gIR0C87cX6InBtdX2UKGgGR0CPMGClJpWWaAdN6ANoCEdAvO69vZRKpXV9lChoBkdAjymQ79ycTmgHTegDaAhHQLzxMGlANXp1fZQoaAZHQI8IHxjJ+2FoB03oA2gIR0C88VCgTRICdX2UKGgGR0CPCV2FFlTWaAdN6ANoCEdAvPfwUsWfsnV9lChoBkdAUFEnRb8m8mgHS1JoCEdAvPjJDWsijnV9lChoBkdAjyWimEXcg2gHTegDaAhHQLz483qzJIV1fZQoaAZHQI8arHAAQxxoB03oA2gIR0C9CMnYUWVNdX2UKGgGR0CPCSzj3mFKaAdN6ANoCEdAvQjprhzeXXV9lChoBkdARSSFIuoP1GgHSzhoCEdAvQl3ktEofHV9lChoBkdAjvfG6GxlhGgHTegDaAhHQL0QIDaGpMp1fZQoaAZHQI8e9i2DxsloB03oA2gIR0C9EEkONHYpdX2UKGgGR0CPI67xusLfaAdN6ANoCEdAvRK+YKIBR3V9lChoBkdAjx+bdSEUTWgHTegDaAhHQL0TbXMyJsR1fZQoaAZHQI8fzMzMzM1oB03oA2gIR0C9GkNovi97dX2UKGgGR0CPDvcO9WZJaAdN6ANoCEdAvRpuOvMbFXV9lChoBkdAjvNIvrWy1WgHTegDaAhHQL0dATdLxqh1fZQoaAZHQI8Ha4Wk8A9oB03oA2gIR0C9Hbeuq3mWdX2UKGgGR0BQt/1HvttzaAdLT2gIR0C9Hogc94eLdX2UKGgGR0CPKbfdhy80aAdN6ANoCEdAvS7tkmQbM3V9lChoBkdAjv2t0FKTS2gHTegDaAhHQL0vFkgwGnp1fZQoaAZHQEwK1xbSqlxoB0tSaAhHQL0vvEbYK6Z1fZQoaAZHQFJuK28Zk09oB0tfaAhHQL0wBlnh86V1fZQoaAZHQI8Ujq6e5FxoB03oA2gIR0C9MYjviLl4dX2UKGgGR0CPJL7BO58SaAdN6ANoCEdAvTL+717IDHV9lChoBkdAjy1qoAGSp2gHTegDaAhHQL05pn27FsJ1fZQoaAZHQI8GVQ66reZoB03oA2gIR0C9OfCiqQzUdX2UKGgGR0BJF74rSVnmaAdLUGgIR0C9OnG4iHIqdX2UKGgGR0CPCR+4smOVaAdN6ANoCEdAvTt2I+GGmHV9lChoBkdAjyLWys0YTGgHTegDaAhHQL088JUo8ZF1fZQoaAZHQI8cG7aqS5loB03oA2gIR0C9UVvi5uqFdX2UKGgGR0CPExV81Gb1aAdN6ANoCEdAvVHc/5ckdHV9lChoBkdAjxFfG+9Jz2gHTegDaAhHQL1S4jDsMRZ1fZQoaAZHQI8vNZxJd0JoB03oA2gIR0C9VFzV2A5JdX2UKGgGR0BRG01/DtPYaAdLW2gIR0C9VUbz06HTdX2UKGgGR0CPEFJkGzKLaAdN6ANoCEdAvVt9xEORT3V9lChoBkdAjwmpPhybQWgHTegDaAhHQL1cBTtsvZh1fZQoaAZHQI8WRdD6WPdoB03oA2gIR0C9XRM5wOvudX2UKGgGR0CPIwzlcQiBaAdN6ANoCEdAvV+N1Tzd13V9lChoBkdAjyU6nivPkmgHTegDaAhHQL1l5Ldepn91fZQoaAZHQI8tNv863iJoB03oA2gIR0C9ZmvvrnkldX2UKGgGR0CPK6WDYh+waAdN6ANoCEdAvWd6TmnwX3V9lChoBkdAjxppBgNPQGgHTegDaAhHQL1p9Ra5f+l1fZQoaAZHQEc+OKfnOjZoB0tIaAhHQL1qs+cH4XZ1fZQoaAZHQFohyJsO5J9oB0t7aAhHQL18QoegctJ1fZQoaAZHQI8vMFMZgohoB03oA2gIR0C9gF7IHTqjdX2UKGgGR0CPJoq94/u9aAdN6ANoCEdAvYDfsyBTXXV9lChoBkdAjyZkcbR4QmgHTegDaAhHQL2B4JW/8EV1fZQoaAZHQI8bDHn2ZiNoB03oA2gIR0C9hillK9PDdX2UKGgGR0CPGCFaB7NTaAdN6ANoCEdAvYpIjt5UtXV9lChoBkdAjylzIFNcnmgHTegDaAhHQL2KyPJaJRB1fZQoaAZHQI8ZP1pTMq1oB03oA2gIR0C9i8uogmqpdX2UKGgGR0CPJU5OJtSAaAdN6ANoCEdAvZAX6l+Ey3V9lChoBkdAjyTc6eXiSGgHTegDaAhHQL2hqG4ZuQ91fZQoaAZHQI6A0HIIWxhoB03oA2gIR0C9oi748EFGdX2UKGgGR0CPI6fdyksSaAdN6ANoCEdAvaM9vOyE+XV9lChoBkdAjy4kjopx3mgHTegDaAhHQL2nw6Fdszl1fZQoaAZHQEzFewcHWz5oB0tZaAhHQL2osGwiaAp1fZQoaAZHQI8lLXz19ORoB03oA2gIR0C9rBkxVQyidX2UKGgGR0CPCvPhybQUaAdN6ANoCEdAvayhiZv1lHV9lChoBkdAjxffbsWweWgHTegDaAhHQL2tpNg0CRx1fZQoaAZHQI74odfb9IhoB03oA2gIR0C9stNZNfw7dX2UKGgGR0CPAp6sySFHaAdN6ANoCEdAvbYQp7TlT3V9lChoBkdAjyq2KVII4WgHTegDaAhHQL22kNI9TxZ1fZQoaAZHQESytUXHim5oB0s4aAhHQL22nm3fAKx1fZQoaAZHQI8kQLG7z09oB03oA2gIR0C9t5EeIVM3dX2UKGgGR0CPGGfq5byIaAdN6ANoCEdAvcubCwbEP3V9lChoBkdAjy234sVclmgHTegDaAhHQL3PVOFxn4B1fZQoaAZHQI8h4wh4dIZoB03oA2gIR0C9z2KAOJ+EdX2UKGgGR0BQHqU3XI2gaAdLT2gIR0C90ByCBf8edX2UKGgGR0CO/fR8c+7laAdN6ANoCEdAvdBVNi6QNnV9lChoBkdAjxFjh1klNWgHTegDaAhHQL3Vg9+gDih1fZQoaAZHQGLAkNvwVj9oB0upaAhHQL3XMIHTqjd1fZQoaAZHQI703DvVmSRoB03oA2gIR0C92VO8PFvRdX2UKGgGR0CPIluZTho/aAdN6ANoCEdAvdoP7wazeHV9lChoBkdAjxIYffXPJWgHTegDaAhHQL3aSJ9RaX91fZQoaAZHQI8X6yMUAT9oB03oA2gIR0C94W6DPGADdWUu"
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 62500,
|
95 |
+
"n_steps": 8,
|
96 |
+
"gamma": 0.99,
|
97 |
+
"gae_lambda": 0.9,
|
98 |
+
"ent_coef": 0.0,
|
99 |
+
"vf_coef": 0.4,
|
100 |
+
"max_grad_norm": 0.5,
|
101 |
+
"normalize_advantage": false,
|
102 |
+
"_last_dones": {
|
103 |
+
":type:": "<class 'numpy.ndarray'>",
|
104 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
105 |
+
}
|
106 |
+
}
|
a2c-Walker2DBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ad8ee7e3849a41d5bfc52238f06ddd177bcf2ad3d35e6f8d3ca95e1a2b0e27d
|
3 |
+
size 52542
|
a2c-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fde1a77045165ce9bda2d9e178356ca3440ec97529a0941eb18247e624b134f4
|
3 |
+
size 53182
|
a2c-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - env
|
5 |
+
- Walker2DBulletEnv-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 3107665444
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - env_wrapper
|
5 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
6 |
+
- - gae_lambda
|
7 |
+
- 0.9
|
8 |
+
- - gamma
|
9 |
+
- 0.99
|
10 |
+
- - learning_rate
|
11 |
+
- lin_0.00096
|
12 |
+
- - max_grad_norm
|
13 |
+
- 0.5
|
14 |
+
- - n_envs
|
15 |
+
- 4
|
16 |
+
- - n_steps
|
17 |
+
- 8
|
18 |
+
- - n_timesteps
|
19 |
+
- 2000000.0
|
20 |
+
- - normalize
|
21 |
+
- true
|
22 |
+
- - normalize_advantage
|
23 |
+
- false
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - policy_kwargs
|
27 |
+
- dict(log_std_init=-2, ortho_init=False)
|
28 |
+
- - use_rms_prop
|
29 |
+
- true
|
30 |
+
- - use_sde
|
31 |
+
- true
|
32 |
+
- - vf_coef
|
33 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fc156a08ead84b9fa713c3a4da16b72d323e619fb009469090e52ea093cb7b5
|
3 |
+
size 164234
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 809.7529213, "std_reward": 376.19127124137987, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T18:41:41.584864"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:535dd73d4798fe6fa2a4ebc9a092dba360f6bf9684564c99c1418f3ca3ec6984
|
3 |
+
size 128600
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:399de2cd6ea1ded1e871dde4c8369f1c3cf33b99812a05aa25ca3c6d8f68bbc5
|
3 |
+
size 5274
|