araffin commited on
Commit
3b0521a
·
verified ·
1 Parent(s): ef32ab0

Initial commit

Browse files
README.md CHANGED
@@ -8,16 +8,17 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 500.00 +/- 0.00
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: CartPole-v1
20
  type: CartPole-v1
 
 
 
 
 
21
  ---
22
 
23
  # **PPO** Agent playing **CartPole-v1**
@@ -35,15 +36,26 @@ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
  SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
  SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
 
 
 
 
 
 
38
  ```
39
  # Download model and save it into the logs/ folder
40
  python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/
41
- python enjoy.py --algo ppo --env CartPole-v1 -f logs/
 
 
 
 
 
 
42
  ```
43
 
44
  ## Training (with the RL Zoo)
45
  ```
46
- python train.py --algo ppo --env CartPole-v1 -f logs/
47
  # Upload the model and generate video (when possible)
48
  python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3
49
  ```
@@ -63,3 +75,8 @@ OrderedDict([('batch_size', 256),
63
  ('policy', 'MlpPolicy'),
64
  ('normalize', False)])
65
  ```
 
 
 
 
 
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: CartPole-v1
16
  type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **CartPole-v1**
 
36
  SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
  SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
 
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
  ```
45
  # Download model and save it into the logs/ folder
46
  python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env CartPole-v1 -orga sb3 -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env CartPole-v1 -f logs/
54
  ```
55
 
56
  ## Training (with the RL Zoo)
57
  ```
58
+ python -m rl_zoo3.train --algo ppo --env CartPole-v1 -f logs/
59
  # Upload the model and generate video (when possible)
60
  python -m rl_zoo3.push_to_hub --algo ppo --env CartPole-v1 -f logs/ -orga sb3
61
  ```
 
75
  ('policy', 'MlpPolicy'),
76
  ('normalize', False)])
77
  ```
78
+
79
+ # Environment Arguments
80
+ ```python
81
+ {'render_mode': 'rgb_array'}
82
+ ```
args.yml CHANGED
@@ -1,24 +1,34 @@
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
 
 
 
 
4
  - - env
5
  - CartPole-v1
6
  - - env_kwargs
7
  - null
 
 
8
  - - eval_episodes
9
- - 10
10
  - - eval_freq
11
- - 10000
12
  - - gym_packages
13
  - []
14
  - - hyperparams
15
  - null
16
  - - log_folder
17
- - rl-trained-agents/
18
  - - log_interval
19
  - -1
 
 
 
 
20
  - - n_evaluations
21
- - 20
22
  - - n_jobs
23
  - 1
24
  - - n_startup_trials
@@ -26,11 +36,17 @@
26
  - - n_timesteps
27
  - -1
28
  - - n_trials
29
- - 10
 
 
30
  - - num_threads
31
  - -1
 
 
32
  - - optimize_hyperparameters
33
  - false
 
 
34
  - - pruner
35
  - median
36
  - - sampler
@@ -40,20 +56,28 @@
40
  - - save_replay_buffer
41
  - false
42
  - - seed
43
- - 1648070233
44
  - - storage
45
  - null
46
  - - study_name
47
  - null
48
  - - tensorboard_log
49
  - ''
 
 
50
  - - trained_agent
51
  - ''
52
  - - truncate_last_trajectory
53
  - true
54
  - - uuid
55
- - true
56
  - - vec_env
57
  - dummy
58
  - - verbose
59
  - 1
 
 
 
 
 
 
 
1
  !!python/object/apply:collections.OrderedDict
2
  - - - algo
3
  - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
  - - env
9
  - CartPole-v1
10
  - - env_kwargs
11
  - null
12
+ - - eval_env_kwargs
13
+ - null
14
  - - eval_episodes
15
+ - 5
16
  - - eval_freq
17
+ - 25000
18
  - - gym_packages
19
  - []
20
  - - hyperparams
21
  - null
22
  - - log_folder
23
+ - logs/
24
  - - log_interval
25
  - -1
26
+ - - max_total_trials
27
+ - null
28
+ - - n_eval_envs
29
+ - 1
30
  - - n_evaluations
31
+ - null
32
  - - n_jobs
33
  - 1
34
  - - n_startup_trials
 
36
  - - n_timesteps
37
  - -1
38
  - - n_trials
39
+ - 500
40
+ - - no_optim_plots
41
+ - false
42
  - - num_threads
43
  - -1
44
+ - - optimization_log_path
45
+ - null
46
  - - optimize_hyperparameters
47
  - false
48
+ - - progress
49
+ - false
50
  - - pruner
51
  - median
52
  - - sampler
 
56
  - - save_replay_buffer
57
  - false
58
  - - seed
59
+ - 1219069588
60
  - - storage
61
  - null
62
  - - study_name
63
  - null
64
  - - tensorboard_log
65
  - ''
66
+ - - track
67
+ - false
68
  - - trained_agent
69
  - ''
70
  - - truncate_last_trajectory
71
  - true
72
  - - uuid
73
+ - false
74
  - - vec_env
75
  - dummy
76
  - - verbose
77
  - 1
78
+ - - wandb_entity
79
+ - null
80
+ - - wandb_project_name
81
+ - sb3
82
+ - - wandb_tags
83
+ - []
env_kwargs.yml CHANGED
@@ -1 +1 @@
1
- {}
 
1
+ render_mode: rgb_array
ppo-CartPole-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aed1e01e30eda8663abaa93e78d6112e34d477a6dbb8fc2f7f6b244d589aec95
3
- size 139223
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:640b68d3e6dca9db739b0223297436700e871929e54add7b869b9ccd8caa7a12
3
+ size 142807
ppo-CartPole-v1/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.5.1a6
 
1
+ 2.3.0a3
ppo-CartPole-v1/data CHANGED
@@ -3,93 +3,113 @@
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
- "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f66a4faba70>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f66a4fabb00>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f66a4fabb90>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f66a4fabc20>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f66a4fabcb0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f66a4fabd40>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f66a4fabdd0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f66a4fabe60>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f66a4fabef0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f66a4fabf80>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f66a4fb2050>",
 
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f66a4fff660>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
- "observation_space": {
24
- ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUjAFDlHSUUpSMBGhpZ2iUaBAolhAAAAAAAAAAmpmZQP//f39Qd9Y+//9/f5RoCksEhZRoE3SUUpSMDWJvdW5kZWRfYmVsb3eUaBAolgQAAAAAAAAAAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksEhZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgQAAAAAAAAAAQEBAZRoH0sEhZRoE3SUUpSMCl9ucF9yYW5kb22UTowGX3NoYXBllEsEhZR1Yi4=",
26
- "dtype": "float32",
27
- "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
28
- "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
29
- "bounded_below": "[ True True True True]",
30
- "bounded_above": "[ True True True True]",
31
- "_np_random": null,
32
- "_shape": [
33
- 4
34
- ]
35
- },
36
- "action_space": {
37
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
39
- "n": 2,
40
- "dtype": "int64",
41
- "_np_random": "RandomState(MT19937)",
42
- "_shape": []
43
- },
44
- "n_envs": 8,
45
  "num_timesteps": 100096,
46
  "_total_timesteps": 100000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": 0,
49
  "action_noise": null,
50
- "start_time": 1614619329.118938,
51
  "learning_rate": {
52
  ":type:": "<class 'function'>",
53
- ":serialized:": "gAWVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
54
  },
55
  "tensorboard_log": null,
56
- "lr_schedule": {
57
- ":type:": "<class 'function'>",
58
- ":serialized:": "gAWVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
- },
60
  "_last_obs": null,
61
- "_last_episode_starts": null,
 
 
 
62
  "_last_original_obs": null,
63
  "_episode_num": 0,
64
  "use_sde": false,
65
  "sde_sample_freq": -1,
66
  "_current_progress_remaining": -0.0009600000000000719,
 
67
  "ep_info_buffer": {
68
  ":type:": "<class 'collections.deque'>",
69
- ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdASULXe3x4IXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQElW6xPfsNV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BJbu1WsA/+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdASXJdld1Md3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEm4DqW1MM91fZQoaAZHQH9AAAAAAABoB030AWgIR0BJ/mVRk3CLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdASirQqqfe13V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEqPdNWU8mt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BKv243FUADdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAStOf029+PXV9lChoBkdARYAAAAAAAGgHSytoCEdAStk72criEXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQErZHnU2DQJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BK75k9U0emdX2UKGgGR0BEgAAAAAAAaAdLKWgIR0BK7Vsk6cRUdX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BLBWYOUdJbdX2UKGgGR0BysAAAAAAAaAdNKwFoCEdASwPZwn6VMXV9lChoBkdATAAAAAAAAGgHSzhoCEdASwfUONHYpXV9lChoBkdAYyAAAAAAAGgHS5loCEdASwXn+yZ8bHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEs1uR9w3o91fZQoaAZHQH9AAAAAAABoB030AWgIR0BLe8tPHktFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATZLo4dZJTXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE2Qq9XcQAd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BNlky+HrQgdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATafTZxrBTHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE2r9XLeQ+51fZQoaAZHQH9AAAAAAABoB030AWgIR0BNqgnMMZxadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATcYaUA1ejXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE4L+1Bt1p11fZQoaAZHQH9AAAAAAABoB030AWgIR0BO+2GATZg5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATvkkleF+NXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE8RIzWPLgZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BPD5imVJL/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATxOQCCBf8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQE8RpEhJRO11fZQoaAZHQH9AAAAAAABoB030AWgIR0BPQNqpLmITdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAT4bVUdaMaXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFA7Pjn3cpN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQOiBTXJ5ndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUEZV94NZvHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBFj5bhWHV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQR4tcv/R3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUEaUmlZX+3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFDxTSLIgeR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BRFEKmbb1zdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUYRUn5SFXnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFGMapPykKx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BRj003wTdtdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUY6WhRIjGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFGZyMkyDZl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BRmNJe3QUpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUacRg7YChnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFHKE3bVSXN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSQd+ocaOxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUkDBCUornXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFJM2WpqASZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSTBPwd8zAdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUk4PRRdhRnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFJNGCZnctZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BSZI2Kl54XdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUodTKkl/pnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFOWA+pwS8J1fZQoaAZHQH9AAAAAAABoB030AWgIR0BTlObRWtEHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAU6D642CNCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFOgNbTtsvZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BTojBInSfEdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAU6E5PuXu3XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFOvYcNpdrx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BT26e05U97dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVEnABT4tYnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFRIoPkJa7p1fZQoaAZHQH9AAAAAAABoB030AWgIR0BUVLqQiiZfdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVFP1anrIHXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFRfMlkYoAp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BUXj0QK8cudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVGx0cOskp3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFSPWqcVgx91fZQoaAZHQH9AAAAAAABoB030AWgIR0BVBpOJtSAIdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVQV9srNGE3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFURskY4yXV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BVEO32EkB0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVRLqRlpXZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFUR89fTkQx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BVvVct5D7ZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVeAJ9iMHbHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFZXTjebd8B1fZQoaAZHQH9AAAAAAABoB030AWgIR0BWVi8OCoS+dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVlkAwPAfuHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFZhuHN5dGB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BWY7TDwYtQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVmK96C17Y3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFZwyOaOPvN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BWk7hrFfiQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVwrcmBvrGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFcJvjfek591fZQoaAZHQH9AAAAAAABoB030AWgIR0BXFfoq0+khdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVxU0elsP8XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFcXMjeKsMl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BXFjwQUYbbdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAVy1hrnDBM3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFdP+B6KLsN1ZS4="
70
  },
71
  "ep_success_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
  },
75
  "_n_updates": 7820,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  "n_steps": 32,
77
  "gamma": 0.98,
78
  "gae_lambda": 0.8,
79
  "ent_coef": 0.0,
80
  "vf_coef": 0.5,
81
  "max_grad_norm": 0.5,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  "batch_size": 256,
83
  "n_epochs": 20,
84
  "clip_range": {
85
  ":type:": "<class 'function'>",
86
- ":serialized:": "gAWVngMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyECiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMAogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6IChmbG9hdCkKICAgICAgICA6cmV0dXJuOiAoZmxvYXQpCiAgICAgICAglIWUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjFovdm9sdW1lL1VTRVJTVE9SRS9yYWZmX2FuL3Byb2plY3RzL2V4cGVyaW1lbnRzL3JlbGVhc2UxLjAvcmwtYmFzZWxpbmVzMy16b28vdXRpbHMvdXRpbHMucHmUjARmdW5jlEv+QwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAV1dGlsc5SMCF9fbmFtZV9flIwLdXRpbHMudXRpbHOUjAhfX2ZpbGVfX5SMWi92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvZXhwZXJpbWVudHMvcmVsZWFzZTEuMC9ybC1iYXNlbGluZXMzLXpvby91dGlscy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGGgPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoLnWMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
  },
88
  "clip_range_vf": null,
89
  "normalize_advantage": true,
90
  "target_kl": null,
91
- "_last_dones": {
92
- ":type:": "<class 'numpy.ndarray'>",
93
- ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
94
  }
95
  }
 
3
  ":type:": "<class 'abc.ABCMeta'>",
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f155af64c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f155af64ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f155af64d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f155af64dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f155af64e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f155af64ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f155af64f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f155af65000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f155af65090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f155af65120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f155af651b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f155af65240>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f155af51500>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 100096,
25
  "_total_timesteps": 100000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": 0,
28
  "action_noise": null,
29
+ "start_time": 1709892381384337469,
30
  "learning_rate": {
31
  ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
33
  },
34
  "tensorboard_log": null,
 
 
 
 
35
  "_last_obs": null,
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
39
+ },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
  "_current_progress_remaining": -0.0009600000000000719,
45
+ "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdANnxyfcvdunV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDbnuZ1FH8V1fZQoaAZHQH9AAAAAAABoB030AWgIR0A3Ga/ATIvKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdANxwbp/wy7HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDeprKvFFUh1fZQoaAZHQH9AAAAAAABoB030AWgIR0A33A/s3Q2NdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAN99e6Zpi7XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDgRNO/L1VZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0A4I7TUiILxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOGP3N9ph4XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDiLOqvNeMR1fZQoaAZHQH9AAAAAAABoB030AWgIR0A4jWDHwPRRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOQH/1g6U7nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDkYWqLjxTd1fZQoaAZHQH9AAAAAAABoB030AWgIR0A5KgNPP9k0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOT/bsWweNnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDlTodMj/uN1fZQoaAZHQH9AAAAAAABoB030AWgIR0A5pZ9d/rjYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOcwdfb9IgHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDnOWyC4Bmx1fZQoaAZHQH9AAAAAAABoB030AWgIR0A6QXz19ORDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOljvNNahYnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDpxZ3cHnlp1fZQoaAZHQH9AAAAAAABoB030AWgIR0A6lMi8nNPhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOqxy8zyjHnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDsIwxnFo+R1fZQoaAZHQH9AAAAAAABoB030AWgIR0A7N9Q40dildX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAOzoSYgJTl3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDvHFo+Ofd11fZQoaAZHQH9AAAAAAABoB030AWgIR0A7+TP0I1LrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAO/0ZJkGzKXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDwx+iJwbVB1fZQoaAZHQH9AAAAAAABoB030AWgIR0A8N2mHgxagdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPKf7FbVz63V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQDzeXb/Ot4l1fZQoaAZHQH9AAAAAAABoB030AWgIR0A84JQtSQ5ndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPYKdxyXD33V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD2l8MNMGot1fZQoaAZHQH9AAAAAAABoB030AWgIR0A9wLGJemeldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPeMUAT7EYXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD4Apz90ihZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0A+ikVvddmhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAPtGc8TzunnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD7T6DXe3x51fZQoaAZHQH9AAAAAAABoB030AWgIR0A/aRa5f+judX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAP4U9+w1R+HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQD+IWac7Qsx1fZQoaAZHQH9AAAAAAABoB030AWgIR0A/tvoNd7fIdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAP86RU3n6mHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQECCarmyPdV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BAoVYhdMTOdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQKJsKsuFpXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEDf3+uNgjR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BA91+7UXpGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQPkZJkGzKXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEEPAqNIbwV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BBEYlIEr5JdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQUNBF/hESnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEFb9vS+g151fZQoaAZHQH9AAAAAAABoB030AWgIR0BBXRNqQA+7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQaZMFlkH2XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEG0RjjJdSl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BBv3l8w5/9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQczSiM5wO3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEHY1l5GBnV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BCC+Jgssg/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQiTg0j1PFnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEIl/WlMyrR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BCZBKDkELZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQnsPrfLs8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEJ8o2n889x1fZQoaAZHQH9AAAAAAABoB030AWgIR0BCkzabnX/YdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQp6wr1/UfHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQELHf4REnb91fZQoaAZHQH9AAAAAAABoB030AWgIR0BC4FIVdonKdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQuFtqHoHLXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEMp/95yEL91fZQoaAZHQH9AAAAAAABoB030AWgIR0BDOB5X2dupdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQ0N90A93bHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQENQr8R+SbJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BDXExh2GIsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQ43k5p8F6nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEOl20Re1KJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BDpxNZeRgadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAQ+53u/k/8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEP8LWI42jx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BEBnVG0/nodX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdARBTltCRfW3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEQgFOfukUN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BEUMZYPoV3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdARGi3VkMCtHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQERp1QqI7/51fZQoaAZHQH9AAAAAAABoB030AWgIR0BEqcophF3IdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdARMDYXfqHGnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQETCSqU/wAl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BE2Qw9JSR9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdARNtMuez2OHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEUMg00m+kB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BFlIna37UHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdARZWXeFcps3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
  "_n_updates": 7820,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True]",
60
+ "bounded_above": "[ True True True True]",
61
+ "_shape": [
62
+ 4
63
+ ],
64
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
65
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
66
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
67
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
73
+ "n": "2",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 1,
80
  "n_steps": 32,
81
  "gamma": 0.98,
82
  "gae_lambda": 0.8,
83
  "ent_coef": 0.0,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "rollout_buffer_class": {
87
+ ":type:": "<class 'abc.ABCMeta'>",
88
+ ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
89
+ "__module__": "stable_baselines3.common.buffers",
90
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
91
+ "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
92
+ "__init__": "<function RolloutBuffer.__init__ at 0x7f155b2a2680>",
93
+ "reset": "<function RolloutBuffer.reset at 0x7f155b2a2710>",
94
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7f155b2a27a0>",
95
+ "add": "<function RolloutBuffer.add at 0x7f155b2a2830>",
96
+ "get": "<function RolloutBuffer.get at 0x7f155b2a28c0>",
97
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x7f155b2a2950>",
98
+ "__abstractmethods__": "frozenset()",
99
+ "_abc_impl": "<_abc._abc_data object at 0x7f155b298d80>"
100
+ },
101
+ "rollout_buffer_kwargs": {},
102
  "batch_size": 256,
103
  "n_epochs": 20,
104
  "clip_range": {
105
  ":type:": "<class 'function'>",
106
+ ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
107
  },
108
  "clip_range_vf": null,
109
  "normalize_advantage": true,
110
  "target_kl": null,
111
+ "lr_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIIBpSMDmluaXRpYWxfdmFsdWVflIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwHcmxfem9vM5SMCF9fbmFtZV9flIwNcmxfem9vMy51dGlsc5SMCF9fZmlsZV9flIw6L2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS16b28vcmxfem9vMy91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCx1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
  }
115
  }
ppo-CartPole-v1/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fe8d3c93141198d72b36b61520a65759eb4489de111095126f9193177aaea525
3
- size 79453
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f98c18777d3c1275ee5d3210a8f429aae0c82ddb2e2ceb068ebfe50fc645efd9
3
+ size 82858
ppo-CartPole-v1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:af07ce9863e1c063cbd8af21ff152b6226ff46fdb9878b61d7383f3335aceac6
3
- size 40513
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5c0161ae2203aef65ee0e4b95e3bcba7ef9ae729a73a77f02bef809157ba25b
3
+ size 41074
ppo-CartPole-v1/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
- size 431
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-CartPole-v1/system_info.txt CHANGED
@@ -1,7 +1,9 @@
1
- OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
- Python: 3.7.12
3
- Stable-Baselines3: 1.5.1a6
4
- PyTorch: 1.11.0+cpu
5
- GPU Enabled: False
6
- Numpy: 1.21.6
7
- Gym: 0.21.0
 
 
 
1
+ - OS: Linux-5.15.0-97-generic-x86_64-with-glibc2.35 # 107-Ubuntu SMP Wed Feb 7 13:26:48 UTC 2024
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 2.3.0a3
4
+ - PyTorch: 2.2.0+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:973039e99274e465f44e6680454d85ec49645c67c509e92183c7a6d1a570d977
3
- size 56189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d168d5929c9affacf6c942d462d536b538cab63c0915eaa7e78bd56dddc2354
3
+ size 50986
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-24T17:08:02.211559"}
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-08T11:08:44.187254"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e8043022605666a30a0cdf8af15258e591c5cb9e475e3812131f824656f5e43
3
- size 10190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60d1a5a23ca30fa7e64c921f39505714a8d3d05a5787b7c7c1d108c7a4f24a39
3
+ size 9177