araffin commited on
Commit
9f7c028
1 Parent(s): 76f5ab3

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -108.20 +/- 8.16
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **PPO** agent playing **MountainCar-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env MountainCar-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo ppo --env MountainCar-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env MountainCar-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env MountainCar-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('ent_coef', 0.0),
54
+ ('gae_lambda', 0.98),
55
+ ('gamma', 0.99),
56
+ ('n_envs', 16),
57
+ ('n_epochs', 4),
58
+ ('n_steps', 16),
59
+ ('n_timesteps', 1000000.0),
60
+ ('normalize', True),
61
+ ('policy', 'MlpPolicy'),
62
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
63
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - env
5
+ - MountainCar-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - rl-trained-agents/
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - -1
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 2944513286
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - true
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - ent_coef
3
+ - 0.0
4
+ - - gae_lambda
5
+ - 0.98
6
+ - - gamma
7
+ - 0.99
8
+ - - n_envs
9
+ - 16
10
+ - - n_epochs
11
+ - 4
12
+ - - n_steps
13
+ - 16
14
+ - - n_timesteps
15
+ - 1000000.0
16
+ - - normalize
17
+ - true
18
+ - - policy
19
+ - MlpPolicy
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b09287ecbcc6ee57a64235bb92bdc81768d568ad59c298b24c5d8a8922b05caa
3
+ size 135221
ppo-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a6
ppo-MountainCar-v0/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1bcd2549e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1bcd254a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1bcd254b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1bcd254b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1bcd254c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1bcd254cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1bcd254d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1bcd254dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1bcd254e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1bcd254ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1bcd254f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f1bcd2a8660>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAJqZmb8pXI+9lGgKSwKFlIwBQ5R0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgIAAAAAAAAAAQGUaB9LAoWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLAoWUdWIu",
26
+ "dtype": "float32",
27
+ "low": "[-1.2 -0.07]",
28
+ "high": "[0.6 0.07]",
29
+ "bounded_below": "[ True True]",
30
+ "bounded_above": "[ True True]",
31
+ "_np_random": null,
32
+ "_shape": [
33
+ 2
34
+ ]
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
39
+ "n": 3,
40
+ "dtype": "int64",
41
+ "_np_random": "RandomState(MT19937)",
42
+ "_shape": []
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1000192,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 0,
49
+ "action_noise": null,
50
+ "start_time": 1614619329.1186676,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": null,
59
+ "_last_original_obs": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO1P3b4AAAAAEEv5vgAAAACOpAy/AAAAANR6Br8AAAAA2gXevgAAAACQmRW/AAAAAEHtAb8AAAAAuMEOvwAAAABgUN2+AAAAAKO7z74AAAAA0kALvwAAAAB3wRK/AAAAAHkUF78AAAAAJsjxvgAAAAB1LwO/AAAAAIijC78AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
62
+ },
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.00019199999999996997,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFwAAAAAAACMAWyUS3CMAXSUR0CFYdhgE2YOdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFYvHU+cH4dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFYrsuWa+fdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFY/1zySV4dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFZB0z0pVkdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFZHgSeyzHdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFZPtBv73xdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFZYBgeA/cdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0CFZrhzeXRgdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFZv82rGR3dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFb4YplSTAdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFb4ovSMLndX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFb56rvLHNdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFcKmWMS9NdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFcKJrLyMDdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFcbMt9QXRdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFccHdoFmndX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFcg09hZyNdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFcxA44p+ddX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFcwyqMm4RdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFc3jvNNahdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFcyAWi1zAdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFdHrsSkCWdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0CFdaNBF/hEdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFdbO8CgbqdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFde01IiC8dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFd6yyD7IldX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFeAF10T11dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFeAV1wHZ9dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFeBMGorFwdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFeUf29L6DdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFeT+Lm6oVdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFeWtSQ5mzdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFelEk0JnhdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFepXvphWpdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFe42GZeAvdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFe/nZkCmudX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFfQrcTJyRdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFfjIH1OCYdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFfklC1JDmdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFfm8QqZtvdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CFfzuLrHENdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFgEVHFxXGdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFgJnIyTIOdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFgKr92ovSdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFgKuscQyzdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CFgIXsPatcdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFgegs9SuRdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0CFgeSYgJTmdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFgcV0Lc9GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFgffaYeDGdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFgyE5hjOLdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFhJRLsa86dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFhZlCCz1LdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFhsF49ovjdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFht+ee4CqdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFhv53Tuv2dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFh8qMFUyYdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFiOR/3FkydX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFiTW3jMmndX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFiRcDbJwLdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFiUcuJ1q4dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFiUsbNr0rdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CFimEyLyc1dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFinoHLRrrdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFipAt4A0bdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFimqsEJSjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFi635vcagdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFjRgJC0F9dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFjigTyrggdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFj2wSrYGudX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFj3YDDCP7dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFj5uVHFxXdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFj4gZCOWCdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CFkFvfCQ9zdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFkFd5Y5ktdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFkYOFQEZBdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFkc4Ajps5dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFka9TP0I1dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFkuGgzxgBdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFkwy6cy31dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFkxjjrAxjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFlDLFn7HidX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFlbMvh60IdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CFlcCkGiYcdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CFlrkvsZ5zdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CFlpCN0eU7dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CFlolCTlkpdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CFl8qm0mdBdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CFl/psXSBtdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFmQDHOryUdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFmP/8VHnVdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CFmWYG+sYEdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CFmoyAQQMAdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0CFmtQgs9SudX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFmqu9vjwQdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0CFm4lnh86WdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFm7oIv8IidX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CFnN50KZ2IdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CFpCrFOwgUdWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 15628,
76
+ "n_steps": 16,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null,
91
+ "_last_dones": {
92
+ ":type:": "<class 'numpy.ndarray'>",
93
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
94
+ }
95
+ }
ppo-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4313f0224c0dc5d1ef5c8b43c1ede2a5af54b59e058f090eff0d9106af506ded
3
+ size 77917
ppo-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a0f8dae08ed576159e1e8dbf2217dd11e0882f5e21db86d47ddb7da48327b0b
3
+ size 39745
ppo-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9d02e99c22b456d0af9cfa7b59900c7f01bfb8ccbb13e45674444d1267d22f2
3
+ size 262749
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -108.2, "std_reward": 8.158431221748456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-26T21:59:39.988152"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baeb06d4e75c647e0249e328864c9e6f1e209559f3d4481323b52af40e95a7b0
3
+ size 203285
vec_normalize.pkl ADDED
Binary file (4.4 kB). View file