Initial Commit
Browse files- .gitattributes +1 -0
- README.md +63 -0
- args.yml +59 -0
- config.yml +19 -0
- env_kwargs.yml +1 -0
- ppo-MountainCar-v0.zip +3 -0
- ppo-MountainCar-v0/_stable_baselines3_version +1 -0
- ppo-MountainCar-v0/data +95 -0
- ppo-MountainCar-v0/policy.optimizer.pth +3 -0
- ppo-MountainCar-v0/policy.pth +3 -0
- ppo-MountainCar-v0/pytorch_variables.pth +3 -0
- ppo-MountainCar-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -108.20 +/- 8.16
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo ppo --env MountainCar-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo ppo --env MountainCar-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo ppo --env MountainCar-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo ppo --env MountainCar-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('ent_coef', 0.0),
|
54 |
+
('gae_lambda', 0.98),
|
55 |
+
('gamma', 0.99),
|
56 |
+
('n_envs', 16),
|
57 |
+
('n_epochs', 4),
|
58 |
+
('n_steps', 16),
|
59 |
+
('n_timesteps', 1000000.0),
|
60 |
+
('normalize', True),
|
61 |
+
('policy', 'MlpPolicy'),
|
62 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
63 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - env
|
5 |
+
- MountainCar-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 2944513286
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.98
|
6 |
+
- - gamma
|
7 |
+
- 0.99
|
8 |
+
- - n_envs
|
9 |
+
- 16
|
10 |
+
- - n_epochs
|
11 |
+
- 4
|
12 |
+
- - n_steps
|
13 |
+
- 16
|
14 |
+
- - n_timesteps
|
15 |
+
- 1000000.0
|
16 |
+
- - normalize
|
17 |
+
- true
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b09287ecbcc6ee57a64235bb92bdc81768d568ad59c298b24c5d8a8922b05caa
|
3 |
+
size 135221
|
ppo-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a6
|
ppo-MountainCar-v0/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1bcd2549e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1bcd254a70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1bcd254b00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1bcd254b90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1bcd254c20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1bcd254cb0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1bcd254d40>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1bcd254dd0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1bcd254e60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1bcd254ef0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1bcd254f80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1bcd2a8660>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAJqZmb8pXI+9lGgKSwKFlIwBQ5R0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgTdJRSlIwNYm91bmRlZF9iZWxvd5RoECiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZRoE3SUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgIAAAAAAAAAAQGUaB9LAoWUaBN0lFKUjApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLAoWUdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"low": "[-1.2 -0.07]",
|
28 |
+
"high": "[0.6 0.07]",
|
29 |
+
"bounded_below": "[ True True]",
|
30 |
+
"bounded_above": "[ True True]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
2
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoE4wFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWKMBl9zaGFwZZQpdWIu",
|
39 |
+
"n": 3,
|
40 |
+
"dtype": "int64",
|
41 |
+
"_np_random": "RandomState(MT19937)",
|
42 |
+
"_shape": []
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1000192,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": 0,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1614619329.1186676,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": null,
|
59 |
+
"_last_original_obs": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAO1P3b4AAAAAEEv5vgAAAACOpAy/AAAAANR6Br8AAAAA2gXevgAAAACQmRW/AAAAAEHtAb8AAAAAuMEOvwAAAABgUN2+AAAAAKO7z74AAAAA0kALvwAAAAB3wRK/AAAAAHkUF78AAAAAJsjxvgAAAAB1LwO/AAAAAIijC78AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.00019199999999996997,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFwAAAAAAACMAWyUS3CMAXSUR0CFYdhgE2YOdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFYvHU+cH4dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFYrsuWa+fdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFY/1zySV4dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFZB0z0pVkdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFZHgSeyzHdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFZPtBv73xdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFZYBgeA/cdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0CFZrhzeXRgdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFZv82rGR3dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFb4YplSTAdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFb4ovSMLndX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFb56rvLHNdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFcKmWMS9NdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFcKJrLyMDdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFcbMt9QXRdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFccHdoFmndX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFcg09hZyNdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFcxA44p+ddX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFcwyqMm4RdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFc3jvNNahdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFcyAWi1zAdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFdHrsSkCWdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0CFdaNBF/hEdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFdbO8CgbqdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFde01IiC8dX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFd6yyD7IldX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFeAF10T11dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFeAV1wHZ9dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFeBMGorFwdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFeUf29L6DdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFeT+Lm6oVdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFeWtSQ5mzdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFelEk0JnhdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFepXvphWpdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFe42GZeAvdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFe/nZkCmudX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFfQrcTJyRdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFfjIH1OCYdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFfklC1JDmdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFfm8QqZtvdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CFfzuLrHENdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFgEVHFxXGdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFgJnIyTIOdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFgKr92ovSdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFgKuscQyzdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CFgIXsPatcdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFgegs9SuRdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0CFgeSYgJTmdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFgcV0Lc9GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFgffaYeDGdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFgyE5hjOLdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFhJRLsa86dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFhZlCCz1LdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFhsF49ovjdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFht+ee4CqdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFhv53Tuv2dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFh8qMFUyYdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFiOR/3FkydX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFiTW3jMmndX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFiRcDbJwLdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFiUcuJ1q4dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFiUsbNr0rdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CFimEyLyc1dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFinoHLRrrdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFipAt4A0bdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFimqsEJSjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFi635vcagdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFjRgJC0F9dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFjigTyrggdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0CFj2wSrYGudX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFj3YDDCP7dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFj5uVHFxXdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CFj4gZCOWCdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CFkFvfCQ9zdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFkFd5Y5ktdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFkYOFQEZBdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFkc4Ajps5dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFka9TP0I1dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFkuGgzxgBdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CFkwy6cy31dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFkxjjrAxjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFlDLFn7HidX2UKGgGR8BcgAAAAAAAaAdLcmgIR0CFlbMvh60IdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CFlcCkGiYcdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CFlrkvsZ5zdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CFlpCN0eU7dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0CFlolCTlkpdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CFl8qm0mdBdX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CFl/psXSBtdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CFmQDHOryUdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CFmP/8VHnVdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CFmWYG+sYEdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CFmoyAQQMAdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0CFmtQgs9SudX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CFmqu9vjwQdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0CFm4lnh86WdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CFm7oIv8IidX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CFnN50KZ2IdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0CFpCrFOwgUdWUu"
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 15628,
|
76 |
+
"n_steps": 16,
|
77 |
+
"gamma": 0.99,
|
78 |
+
"gae_lambda": 0.98,
|
79 |
+
"ent_coef": 0.0,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null,
|
91 |
+
"_last_dones": {
|
92 |
+
":type:": "<class 'numpy.ndarray'>",
|
93 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
94 |
+
}
|
95 |
+
}
|
ppo-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4313f0224c0dc5d1ef5c8b43c1ede2a5af54b59e058f090eff0d9106af506ded
|
3 |
+
size 77917
|
ppo-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0f8dae08ed576159e1e8dbf2217dd11e0882f5e21db86d47ddb7da48327b0b
|
3 |
+
size 39745
|
ppo-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.1a6
|
4 |
+
PyTorch: 1.11.0+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9d02e99c22b456d0af9cfa7b59900c7f01bfb8ccbb13e45674444d1267d22f2
|
3 |
+
size 262749
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -108.2, "std_reward": 8.158431221748456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-26T21:59:39.988152"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:baeb06d4e75c647e0249e328864c9e6f1e209559f3d4481323b52af40e95a7b0
|
3 |
+
size 203285
|
vec_normalize.pkl
ADDED
Binary file (4.4 kB). View file
|
|