araffin commited on
Commit
1d4cec8
1 Parent(s): 22665cc

Initial Commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCarContinuous-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 94.57 +/- 0.45
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCarContinuous-v0
20
+ type: MountainCarContinuous-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **MountainCarContinuous-v0**
24
+ This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
35
+
36
+ ```
37
+ # Download model and save it into the logs/ folder
38
+ python -m utils.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga sb3 -f logs/
39
+ python enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/
40
+ ```
41
+
42
+ ## Training (with the RL Zoo)
43
+ ```
44
+ python train.py --algo ppo --env MountainCarContinuous-v0 -f logs/
45
+ # Upload the model and generate video (when possible)
46
+ python -m utils.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga sb3
47
+ ```
48
+
49
+ ## Hyperparameters
50
+ ```python
51
+ OrderedDict([('batch_size', 256),
52
+ ('clip_range', 0.1),
53
+ ('ent_coef', 0.00429),
54
+ ('gae_lambda', 0.9),
55
+ ('gamma', 0.9999),
56
+ ('learning_rate', 7.77e-05),
57
+ ('max_grad_norm', 5),
58
+ ('n_envs', 1),
59
+ ('n_epochs', 10),
60
+ ('n_steps', 8),
61
+ ('n_timesteps', 20000.0),
62
+ ('normalize', True),
63
+ ('policy', 'MlpPolicy'),
64
+ ('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'),
65
+ ('use_sde', True),
66
+ ('vf_coef', 0.19),
67
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
68
+ ```
args.yml ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - device
5
+ - auto
6
+ - - env
7
+ - MountainCarContinuous-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 10000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - logs
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - -1
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 3913475051
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - track
59
+ - false
60
+ - - trained_agent
61
+ - ''
62
+ - - truncate_last_trajectory
63
+ - true
64
+ - - uuid
65
+ - false
66
+ - - vec_env
67
+ - dummy
68
+ - - verbose
69
+ - 1
70
+ - - wandb_entity
71
+ - null
72
+ - - wandb_project_name
73
+ - sb3
config.yml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - 0.1
6
+ - - ent_coef
7
+ - 0.00429
8
+ - - gae_lambda
9
+ - 0.9
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 7.77e-05
14
+ - - max_grad_norm
15
+ - 5
16
+ - - n_envs
17
+ - 1
18
+ - - n_epochs
19
+ - 10
20
+ - - n_steps
21
+ - 8
22
+ - - n_timesteps
23
+ - 20000.0
24
+ - - normalize
25
+ - true
26
+ - - policy
27
+ - MlpPolicy
28
+ - - policy_kwargs
29
+ - dict(log_std_init=-3.29, ortho_init=False)
30
+ - - use_sde
31
+ - true
32
+ - - vf_coef
33
+ - 0.19
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-MountainCarContinuous-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:893202514403c8bda7e82c24302bb82bd118f6815d25ce8d7e4152b6209ca7db
3
+ size 135161
ppo-MountainCarContinuous-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a6
ppo-MountainCarContinuous-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f85f31d9cb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85f31d9d40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85f31d9dd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85f31d9e60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f85f31d9ef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f85f31d9f80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85f31e0050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f85f31e00e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85f31e0170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85f31e0200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85f31e0290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f85f322c6f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ "log_std_init": -3.29,
24
+ "ortho_init": false
25
+ },
26
+ "observation_space": {
27
+ ":type:": "<class 'gym.spaces.box.Box'>",
28
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
29
+ "dtype": "float32",
30
+ "_shape": [
31
+ 2
32
+ ],
33
+ "low": "[-1.2 -0.07]",
34
+ "high": "[0.6 0.07]",
35
+ "bounded_below": "[ True True]",
36
+ "bounded_above": "[ True True]",
37
+ "_np_random": null
38
+ },
39
+ "action_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
42
+ "dtype": "float32",
43
+ "_shape": [
44
+ 1
45
+ ],
46
+ "low": "[-1.]",
47
+ "high": "[1.]",
48
+ "bounded_below": "[ True]",
49
+ "bounded_above": "[ True]",
50
+ "_np_random": "RandomState(MT19937)"
51
+ },
52
+ "n_envs": 1,
53
+ "num_timesteps": 20000,
54
+ "_total_timesteps": 20000,
55
+ "_num_timesteps_at_start": 0,
56
+ "seed": 0,
57
+ "action_noise": null,
58
+ "start_time": 1653001017.3332515,
59
+ "learning_rate": {
60
+ ":type:": "<class 'function'>",
61
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
62
+ },
63
+ "tensorboard_log": null,
64
+ "lr_schedule": {
65
+ ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
67
+ },
68
+ "_last_obs": null,
69
+ "_last_episode_starts": {
70
+ ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
72
+ },
73
+ "_last_original_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAO8j6r4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
76
+ },
77
+ "_episode_num": 0,
78
+ "use_sde": true,
79
+ "sde_sample_freq": -1,
80
+ "_current_progress_remaining": 0.0,
81
+ "ep_info_buffer": {
82
+ ":type:": "<class 'collections.deque'>",
83
+ ":serialized:": "gAWVVggAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgY6pYLb6CMAWyUS9KMAXSURz/szSkTHsC1dX2UKGgGR0BYOvLPldTpaAdL+WgIRz//CTY/Vy3kdX2UKGgGR0BXoTK9wm3OaAdNywFoCEdADrRP420iQnV9lChoBkdAWBM/keZG8WgHTQEBaAhHQBOrSmZVn291fZQoaAZHQFhfY1pCa7VoB00wAWgIR0AYvc8DB/I9dX2UKGgGR0BXkNzOoo/iaAdNFwJoCEdAINVOTJQtSXV9lChoBkfAHsrD63y7PWgHTecDaAhHQCkYmois4kx1fZQoaAZHwCvNGsmv4dpoB03nA2gIR0Aws02cawUydX2UKGgGR8AqBXU6PsAvaAdN5wNoCEdANOXZbpu/DnV9lChoBkfAD27lq8DjimgHTecDaAhHQDmEwj+rELp1fZQoaAZHwALKiwjdHlRoB03nA2gIR0A+jELH+6y0dX2UKGgGR0BYMHPZ7HAAaAdNaQFoCEdAQCudPLxI8XV9lChoBkfACxOB19v0iGgHTecDaAhHQEKpRP420iR1fZQoaAZHQFgraUzKs+5oB03IAmgIR0BEbJ66asp5dX2UKGgGR0BX3uUpuuRtaAdLpmgIR0BE1EZiuuA7dX2UKGgGR0BXUPsAvL5iaAdLg2gIR0BFKhJ7LMcIdX2UKGgGR0BXJty5qdpZaAdLiGgIR0BFf+u/1xsEdX2UKGgGR0BWq3kDIRywaAdLuWgIR0BF9CFCb+cZdX2UKGgGR0BW+fYjB2wFaAdLq2gIR0BGXyXlbNbDdX2UKGgGR0BXqZiuuA7QaAdLf2gIR0BGr3OfNA1OdX2UKGgGR0BXQpHNHH3laAdLt2gIR0BHbIOH31zydX2UKGgGR0BXlTq4YrJ9aAdLf2gIR0BHv8iwB5oodX2UKGgGR0BX6I/JNj9XaAdLg2gIR0BIElqBVdX1dX2UKGgGR0BX81uaWom5aAdLwWgIR0BIjzErGza9dX2UKGgGR0BXFxvrGBFvaAdLo2gIR0BI+mhmGucMdX2UKGgGR0BX5P5ULlV+aAdLaGgIR0BJPgNXo1UEdX2UKGgGR0BXKquW8h9taAdLd2gIR0BJiiUgSvkjdX2UKGgGR0BXYeWBz3h5aAdLd2gIR0BJ0GQKa5PNdX2UKGgGR0BXIkLpiZv2aAdL9GgIR0BKaj+R5kbxdX2UKGgGR0BXAjAaef7KaAdLkWgIR0BKx85sCT2WdX2UKGgGR0BXHUy1uzhQaAdLbWgIR0BLEKODJ2dNdX2UKGgGR0BYF+jEehf0aAdLe2gIR0BLXigbp/wzdX2UKGgGR0BXZ8q4H5aeaAdLl2gIR0BLwGwaBI4EdX2UKGgGR0BXgltO2y9maAdLaWgIR0BMA/OD8LrpdX2UKGgGR0BXoFMVUModaAdLj2gIR0BMYVTaTOgQdX2UKGgGR0BXTcpb2USqaAdL1WgIR0BM6vy08eS0dX2UKGgGR0BX3vCEYfnwaAdLs2gIR0BNXQQUYbbUdX2UKGgGR0BXq0O/cnE3aAdL2mgIR0BN6pKSPluFdX2UKGgGR0BYQCyprDZUaAdLl2gIR0BOTiay8jA0dX2UKGgGR0BXiAfdRBNVaAdLr2gIR0BOwFByCFsYdX2UKGgGR0BXLJaFEiMYaAdLrGgIR0BPLFotcv/SdX2UKGgGR0BXbQG0NSZSaAdL2WgIR0BPvW9DhLoPdX2UKGgGR0BXhX0kGA09aAdL4WgIR0BQJxJEpiI+dX2UKGgGR0BX808ifQKKaAdLaWgIR0BQSKeGwiaBdX2UKGgGR0BXDtLxqfvnaAdLqGgIR0BQfs1baAWjdX2UKGgGR0BW03fdhy80aAdL3WgIR0BQxKcI7eVLdX2UKGgGR0BXdMWXTmW/aAdLgWgIR0BQ8dORDCxedX2UKGgGR0BXiZhOP/70aAdLjWgIR0BRJ0BGQSzxdX2UKGgGR0BXLswQDmr9aAdLZGgIR0BRSk4vN/vwdX2UKGgGR0BXMsSK3uuzaAdLg2gIR0BRdDTnaFmGdX2UKGgGR0BXwTOcDr7gaAdLZ2gIR0BRlY95hSccdX2UKGgGR0BXKgB91EE1aAdLoGgIR0BRz03fhuO0dX2UKGgGR0BXY6zE74i5aAdLzWgIR0BSGmV3Ux20dX2UKGgGR0BXZjK1XvH+aAdLh2gIR0BSRHyRSxZ/dX2UKGgGR0BXmSlJpWWAaAdLiWgIR0BSco4Qz1sddX2UKGgGR0BXByaAnUlSaAdNFAFoCEdAUsl1EE1VHXV9lChoBkdAVqMuBczIm2gHTcMBaAhHQFNXn7pFCsx1fZQoaAZHQFbyRR/EwWZoB001AWgIR0BTup31SOzZdX2UKGgGR0BXAG87IT4+aAdNMgFoCEdAVBsp9ZzPr3V9lChoBkdAV87Wwu/UOWgHS7BoCEdAVFLicXm/33V9lChoBkdAWBVnwob4rWgHTUUBaAhHQFS68mKIi1R1fZQoaAZHQFfC5eqrBCVoB02tAWgIR0BVRQ8r7O3VdX2UKGgGR0BXqyt3fQ8faAdNaQFoCEdAVbgwaisXBXV9lChoBkdAV3VAeJYT02gHTYoBaAhHQFY1RRMvh611fZQoaAZHQFZfRjjJdSloB01OAWgIR0BWoMY64lQedX2UKGgGR0BW+L0nPVuraAdL3GgIR0BW5l2aDwpfdX2UKGgGR0BWblJg9eQdaAdNEwFoCEdAVz7Vf/m1Y3V9lChoBkdAV3PpKSPluGgHTUUBaAhHQFelXAuZkTZ1fZQoaAZHQFfFiH6/IsBoB00vAWgIR0BYBtK/VRUFdWUu"
84
+ },
85
+ "ep_success_buffer": {
86
+ ":type:": "<class 'collections.deque'>",
87
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
88
+ },
89
+ "_n_updates": 25000,
90
+ "n_steps": 8,
91
+ "gamma": 0.9999,
92
+ "gae_lambda": 0.9,
93
+ "ent_coef": 0.00429,
94
+ "vf_coef": 0.19,
95
+ "max_grad_norm": 5,
96
+ "batch_size": 256,
97
+ "n_epochs": 10,
98
+ "clip_range": {
99
+ ":type:": "<class 'function'>",
100
+ ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
101
+ },
102
+ "clip_range_vf": null,
103
+ "normalize_advantage": true,
104
+ "target_kl": null
105
+ }
ppo-MountainCarContinuous-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdb435a5401333c9e428ac6b4d4de20678cb4b67ace1bf7655e2051cbf2953ce
3
+ size 77847
ppo-MountainCarContinuous-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2d51e8562bf9474172ca37315e7e410ab91e2b18e2b54d2388ea5cbce1a97a3
3
+ size 39742
ppo-MountainCarContinuous-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-MountainCarContinuous-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.1a6
4
+ PyTorch: 1.11.0+cpu
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e859a0c8e732f071d1c21d572edaaa74d66d97573d77fe09b54b1599904c0b15
3
+ size 229815
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 94.57152370000001, "std_reward": 0.4468755932758117, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T09:31:37.557384"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9c02bd1742d7bb16d035088e757947f1f39a18215879e001497a0632bcef61b
3
+ size 2961
vec_normalize.pkl ADDED
Binary file (4.31 kB). View file