Initial Commit
Browse files- .gitattributes +1 -0
- README.md +68 -0
- args.yml +73 -0
- config.yml +33 -0
- env_kwargs.yml +1 -0
- ppo-MountainCarContinuous-v0.zip +3 -0
- ppo-MountainCarContinuous-v0/_stable_baselines3_version +1 -0
- ppo-MountainCarContinuous-v0/data +105 -0
- ppo-MountainCarContinuous-v0/policy.optimizer.pth +3 -0
- ppo-MountainCarContinuous-v0/policy.pth +3 -0
- ppo-MountainCarContinuous-v0/pytorch_variables.pth +3 -0
- ppo-MountainCarContinuous-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 94.57 +/- 0.45
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCarContinuous-v0
|
20 |
+
type: MountainCarContinuous-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **MountainCarContinuous-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
|
35 |
+
|
36 |
+
```
|
37 |
+
# Download model and save it into the logs/ folder
|
38 |
+
python -m utils.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga sb3 -f logs/
|
39 |
+
python enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/
|
40 |
+
```
|
41 |
+
|
42 |
+
## Training (with the RL Zoo)
|
43 |
+
```
|
44 |
+
python train.py --algo ppo --env MountainCarContinuous-v0 -f logs/
|
45 |
+
# Upload the model and generate video (when possible)
|
46 |
+
python -m utils.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga sb3
|
47 |
+
```
|
48 |
+
|
49 |
+
## Hyperparameters
|
50 |
+
```python
|
51 |
+
OrderedDict([('batch_size', 256),
|
52 |
+
('clip_range', 0.1),
|
53 |
+
('ent_coef', 0.00429),
|
54 |
+
('gae_lambda', 0.9),
|
55 |
+
('gamma', 0.9999),
|
56 |
+
('learning_rate', 7.77e-05),
|
57 |
+
('max_grad_norm', 5),
|
58 |
+
('n_envs', 1),
|
59 |
+
('n_epochs', 10),
|
60 |
+
('n_steps', 8),
|
61 |
+
('n_timesteps', 20000.0),
|
62 |
+
('normalize', True),
|
63 |
+
('policy', 'MlpPolicy'),
|
64 |
+
('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'),
|
65 |
+
('use_sde', True),
|
66 |
+
('vf_coef', 0.19),
|
67 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
68 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- MountainCarContinuous-v0
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 10000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - n_eval_envs
|
23 |
+
- 1
|
24 |
+
- - n_evaluations
|
25 |
+
- null
|
26 |
+
- - n_jobs
|
27 |
+
- 1
|
28 |
+
- - n_startup_trials
|
29 |
+
- 10
|
30 |
+
- - n_timesteps
|
31 |
+
- -1
|
32 |
+
- - n_trials
|
33 |
+
- 500
|
34 |
+
- - no_optim_plots
|
35 |
+
- false
|
36 |
+
- - num_threads
|
37 |
+
- -1
|
38 |
+
- - optimization_log_path
|
39 |
+
- null
|
40 |
+
- - optimize_hyperparameters
|
41 |
+
- false
|
42 |
+
- - pruner
|
43 |
+
- median
|
44 |
+
- - sampler
|
45 |
+
- tpe
|
46 |
+
- - save_freq
|
47 |
+
- -1
|
48 |
+
- - save_replay_buffer
|
49 |
+
- false
|
50 |
+
- - seed
|
51 |
+
- 3913475051
|
52 |
+
- - storage
|
53 |
+
- null
|
54 |
+
- - study_name
|
55 |
+
- null
|
56 |
+
- - tensorboard_log
|
57 |
+
- ''
|
58 |
+
- - track
|
59 |
+
- false
|
60 |
+
- - trained_agent
|
61 |
+
- ''
|
62 |
+
- - truncate_last_trajectory
|
63 |
+
- true
|
64 |
+
- - uuid
|
65 |
+
- false
|
66 |
+
- - vec_env
|
67 |
+
- dummy
|
68 |
+
- - verbose
|
69 |
+
- 1
|
70 |
+
- - wandb_entity
|
71 |
+
- null
|
72 |
+
- - wandb_project_name
|
73 |
+
- sb3
|
config.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - clip_range
|
5 |
+
- 0.1
|
6 |
+
- - ent_coef
|
7 |
+
- 0.00429
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.9
|
10 |
+
- - gamma
|
11 |
+
- 0.9999
|
12 |
+
- - learning_rate
|
13 |
+
- 7.77e-05
|
14 |
+
- - max_grad_norm
|
15 |
+
- 5
|
16 |
+
- - n_envs
|
17 |
+
- 1
|
18 |
+
- - n_epochs
|
19 |
+
- 10
|
20 |
+
- - n_steps
|
21 |
+
- 8
|
22 |
+
- - n_timesteps
|
23 |
+
- 20000.0
|
24 |
+
- - normalize
|
25 |
+
- true
|
26 |
+
- - policy
|
27 |
+
- MlpPolicy
|
28 |
+
- - policy_kwargs
|
29 |
+
- dict(log_std_init=-3.29, ortho_init=False)
|
30 |
+
- - use_sde
|
31 |
+
- true
|
32 |
+
- - vf_coef
|
33 |
+
- 0.19
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-MountainCarContinuous-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:893202514403c8bda7e82c24302bb82bd118f6815d25ce8d7e4152b6209ca7db
|
3 |
+
size 135161
|
ppo-MountainCarContinuous-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a6
|
ppo-MountainCarContinuous-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f85f31d9cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f85f31d9d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f85f31d9dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f85f31d9e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f85f31d9ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f85f31d9f80>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f85f31e0050>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f85f31e00e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f85f31e0170>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f85f31e0200>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f85f31e0290>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f85f322c6f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
"log_std_init": -3.29,
|
24 |
+
"ortho_init": false
|
25 |
+
},
|
26 |
+
"observation_space": {
|
27 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
28 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
29 |
+
"dtype": "float32",
|
30 |
+
"_shape": [
|
31 |
+
2
|
32 |
+
],
|
33 |
+
"low": "[-1.2 -0.07]",
|
34 |
+
"high": "[0.6 0.07]",
|
35 |
+
"bounded_below": "[ True True]",
|
36 |
+
"bounded_above": "[ True True]",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"action_space": {
|
40 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
41 |
+
":serialized:": "gAWV4QsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoMIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
42 |
+
"dtype": "float32",
|
43 |
+
"_shape": [
|
44 |
+
1
|
45 |
+
],
|
46 |
+
"low": "[-1.]",
|
47 |
+
"high": "[1.]",
|
48 |
+
"bounded_below": "[ True]",
|
49 |
+
"bounded_above": "[ True]",
|
50 |
+
"_np_random": "RandomState(MT19937)"
|
51 |
+
},
|
52 |
+
"n_envs": 1,
|
53 |
+
"num_timesteps": 20000,
|
54 |
+
"_total_timesteps": 20000,
|
55 |
+
"_num_timesteps_at_start": 0,
|
56 |
+
"seed": 0,
|
57 |
+
"action_noise": null,
|
58 |
+
"start_time": 1653001017.3332515,
|
59 |
+
"learning_rate": {
|
60 |
+
":type:": "<class 'function'>",
|
61 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
62 |
+
},
|
63 |
+
"tensorboard_log": null,
|
64 |
+
"lr_schedule": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8UXlvV6awBhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
67 |
+
},
|
68 |
+
"_last_obs": null,
|
69 |
+
"_last_episode_starts": {
|
70 |
+
":type:": "<class 'numpy.ndarray'>",
|
71 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
72 |
+
},
|
73 |
+
"_last_original_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAO8j6r4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
|
76 |
+
},
|
77 |
+
"_episode_num": 0,
|
78 |
+
"use_sde": true,
|
79 |
+
"sde_sample_freq": -1,
|
80 |
+
"_current_progress_remaining": 0.0,
|
81 |
+
"ep_info_buffer": {
|
82 |
+
":type:": "<class 'collections.deque'>",
|
83 |
+
":serialized:": "gAWVVggAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFgY6pYLb6CMAWyUS9KMAXSURz/szSkTHsC1dX2UKGgGR0BYOvLPldTpaAdL+WgIRz//CTY/Vy3kdX2UKGgGR0BXoTK9wm3OaAdNywFoCEdADrRP420iQnV9lChoBkdAWBM/keZG8WgHTQEBaAhHQBOrSmZVn291fZQoaAZHQFhfY1pCa7VoB00wAWgIR0AYvc8DB/I9dX2UKGgGR0BXkNzOoo/iaAdNFwJoCEdAINVOTJQtSXV9lChoBkfAHsrD63y7PWgHTecDaAhHQCkYmois4kx1fZQoaAZHwCvNGsmv4dpoB03nA2gIR0Aws02cawUydX2UKGgGR8AqBXU6PsAvaAdN5wNoCEdANOXZbpu/DnV9lChoBkfAD27lq8DjimgHTecDaAhHQDmEwj+rELp1fZQoaAZHwALKiwjdHlRoB03nA2gIR0A+jELH+6y0dX2UKGgGR0BYMHPZ7HAAaAdNaQFoCEdAQCudPLxI8XV9lChoBkfACxOB19v0iGgHTecDaAhHQEKpRP420iR1fZQoaAZHQFgraUzKs+5oB03IAmgIR0BEbJ66asp5dX2UKGgGR0BX3uUpuuRtaAdLpmgIR0BE1EZiuuA7dX2UKGgGR0BXUPsAvL5iaAdLg2gIR0BFKhJ7LMcIdX2UKGgGR0BXJty5qdpZaAdLiGgIR0BFf+u/1xsEdX2UKGgGR0BWq3kDIRywaAdLuWgIR0BF9CFCb+cZdX2UKGgGR0BW+fYjB2wFaAdLq2gIR0BGXyXlbNbDdX2UKGgGR0BXqZiuuA7QaAdLf2gIR0BGr3OfNA1OdX2UKGgGR0BXQpHNHH3laAdLt2gIR0BHbIOH31zydX2UKGgGR0BXlTq4YrJ9aAdLf2gIR0BHv8iwB5oodX2UKGgGR0BX6I/JNj9XaAdLg2gIR0BIElqBVdX1dX2UKGgGR0BX81uaWom5aAdLwWgIR0BIjzErGza9dX2UKGgGR0BXFxvrGBFvaAdLo2gIR0BI+mhmGucMdX2UKGgGR0BX5P5ULlV+aAdLaGgIR0BJPgNXo1UEdX2UKGgGR0BXKquW8h9taAdLd2gIR0BJiiUgSvkjdX2UKGgGR0BXYeWBz3h5aAdLd2gIR0BJ0GQKa5PNdX2UKGgGR0BXIkLpiZv2aAdL9GgIR0BKaj+R5kbxdX2UKGgGR0BXAjAaef7KaAdLkWgIR0BKx85sCT2WdX2UKGgGR0BXHUy1uzhQaAdLbWgIR0BLEKODJ2dNdX2UKGgGR0BYF+jEehf0aAdLe2gIR0BLXigbp/wzdX2UKGgGR0BXZ8q4H5aeaAdLl2gIR0BLwGwaBI4EdX2UKGgGR0BXgltO2y9maAdLaWgIR0BMA/OD8LrpdX2UKGgGR0BXoFMVUModaAdLj2gIR0BMYVTaTOgQdX2UKGgGR0BXTcpb2USqaAdL1WgIR0BM6vy08eS0dX2UKGgGR0BX3vCEYfnwaAdLs2gIR0BNXQQUYbbUdX2UKGgGR0BXq0O/cnE3aAdL2mgIR0BN6pKSPluFdX2UKGgGR0BYQCyprDZUaAdLl2gIR0BOTiay8jA0dX2UKGgGR0BXiAfdRBNVaAdLr2gIR0BOwFByCFsYdX2UKGgGR0BXLJaFEiMYaAdLrGgIR0BPLFotcv/SdX2UKGgGR0BXbQG0NSZSaAdL2WgIR0BPvW9DhLoPdX2UKGgGR0BXhX0kGA09aAdL4WgIR0BQJxJEpiI+dX2UKGgGR0BX808ifQKKaAdLaWgIR0BQSKeGwiaBdX2UKGgGR0BXDtLxqfvnaAdLqGgIR0BQfs1baAWjdX2UKGgGR0BW03fdhy80aAdL3WgIR0BQxKcI7eVLdX2UKGgGR0BXdMWXTmW/aAdLgWgIR0BQ8dORDCxedX2UKGgGR0BXiZhOP/70aAdLjWgIR0BRJ0BGQSzxdX2UKGgGR0BXLswQDmr9aAdLZGgIR0BRSk4vN/vwdX2UKGgGR0BXMsSK3uuzaAdLg2gIR0BRdDTnaFmGdX2UKGgGR0BXwTOcDr7gaAdLZ2gIR0BRlY95hSccdX2UKGgGR0BXKgB91EE1aAdLoGgIR0BRz03fhuO0dX2UKGgGR0BXY6zE74i5aAdLzWgIR0BSGmV3Ux20dX2UKGgGR0BXZjK1XvH+aAdLh2gIR0BSRHyRSxZ/dX2UKGgGR0BXmSlJpWWAaAdLiWgIR0BSco4Qz1sddX2UKGgGR0BXByaAnUlSaAdNFAFoCEdAUsl1EE1VHXV9lChoBkdAVqMuBczIm2gHTcMBaAhHQFNXn7pFCsx1fZQoaAZHQFbyRR/EwWZoB001AWgIR0BTup31SOzZdX2UKGgGR0BXAG87IT4+aAdNMgFoCEdAVBsp9ZzPr3V9lChoBkdAV87Wwu/UOWgHS7BoCEdAVFLicXm/33V9lChoBkdAWBVnwob4rWgHTUUBaAhHQFS68mKIi1R1fZQoaAZHQFfC5eqrBCVoB02tAWgIR0BVRQ8r7O3VdX2UKGgGR0BXqyt3fQ8faAdNaQFoCEdAVbgwaisXBXV9lChoBkdAV3VAeJYT02gHTYoBaAhHQFY1RRMvh611fZQoaAZHQFZfRjjJdSloB01OAWgIR0BWoMY64lQedX2UKGgGR0BW+L0nPVuraAdL3GgIR0BW5l2aDwpfdX2UKGgGR0BWblJg9eQdaAdNEwFoCEdAVz7Vf/m1Y3V9lChoBkdAV3PpKSPluGgHTUUBaAhHQFelXAuZkTZ1fZQoaAZHQFfFiH6/IsBoB00vAWgIR0BYBtK/VRUFdWUu"
|
84 |
+
},
|
85 |
+
"ep_success_buffer": {
|
86 |
+
":type:": "<class 'collections.deque'>",
|
87 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
88 |
+
},
|
89 |
+
"_n_updates": 25000,
|
90 |
+
"n_steps": 8,
|
91 |
+
"gamma": 0.9999,
|
92 |
+
"gae_lambda": 0.9,
|
93 |
+
"ent_coef": 0.00429,
|
94 |
+
"vf_coef": 0.19,
|
95 |
+
"max_grad_norm": 5,
|
96 |
+
"batch_size": 256,
|
97 |
+
"n_epochs": 10,
|
98 |
+
"clip_range": {
|
99 |
+
":type:": "<class 'function'>",
|
100 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
101 |
+
},
|
102 |
+
"clip_range_vf": null,
|
103 |
+
"normalize_advantage": true,
|
104 |
+
"target_kl": null
|
105 |
+
}
|
ppo-MountainCarContinuous-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdb435a5401333c9e428ac6b4d4de20678cb4b67ace1bf7655e2051cbf2953ce
|
3 |
+
size 77847
|
ppo-MountainCarContinuous-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2d51e8562bf9474172ca37315e7e410ab91e2b18e2b54d2388ea5cbce1a97a3
|
3 |
+
size 39742
|
ppo-MountainCarContinuous-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-MountainCarContinuous-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-110-generic-x86_64-with-debian-bullseye-sid #124-Ubuntu SMP Thu Apr 14 19:46:19 UTC 2022
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.1a6
|
4 |
+
PyTorch: 1.11.0+cpu
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e859a0c8e732f071d1c21d572edaaa74d66d97573d77fe09b54b1599904c0b15
|
3 |
+
size 229815
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 94.57152370000001, "std_reward": 0.4468755932758117, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-20T09:31:37.557384"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9c02bd1742d7bb16d035088e757947f1f39a18215879e001497a0632bcef61b
|
3 |
+
size 2961
|
vec_normalize.pkl
ADDED
Binary file (4.31 kB). View file
|
|