Initial commit
Browse files- .gitattributes +1 -0
- README.md +66 -0
- args.yml +59 -0
- config.yml +26 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- td3-Walker2DBulletEnv-v0.zip +3 -0
- td3-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- td3-Walker2DBulletEnv-v0/actor.optimizer.pth +3 -0
- td3-Walker2DBulletEnv-v0/critic.optimizer.pth +3 -0
- td3-Walker2DBulletEnv-v0/data +124 -0
- td3-Walker2DBulletEnv-v0/policy.pth +3 -0
- td3-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- td3-Walker2DBulletEnv-v0/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TD3
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 2240.34 +/- 19.52
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2DBulletEnv-v0
|
20 |
+
type: Walker2DBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TD3** Agent playing **Walker2DBulletEnv-v0**
|
24 |
+
This is a trained model of a **TD3** agent playing **Walker2DBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo td3 --env Walker2DBulletEnv-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo td3 --env Walker2DBulletEnv-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo td3 --env Walker2DBulletEnv-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo td3 --env Walker2DBulletEnv-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('buffer_size', 200000),
|
54 |
+
('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
|
55 |
+
('gamma', 0.98),
|
56 |
+
('gradient_steps', -1),
|
57 |
+
('learning_rate', 0.001),
|
58 |
+
('learning_starts', 10000),
|
59 |
+
('n_timesteps', 1000000.0),
|
60 |
+
('noise_std', 0.1),
|
61 |
+
('noise_type', 'normal'),
|
62 |
+
('policy', 'MlpPolicy'),
|
63 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
64 |
+
('train_freq', [1, 'episode']),
|
65 |
+
('normalize', False)])
|
66 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- td3
|
4 |
+
- - env
|
5 |
+
- Walker2DBulletEnv-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- 100000
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 3495187209
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- false
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - buffer_size
|
3 |
+
- 200000
|
4 |
+
- - env_wrapper
|
5 |
+
- sb3_contrib.common.wrappers.TimeFeatureWrapper
|
6 |
+
- - gamma
|
7 |
+
- 0.98
|
8 |
+
- - gradient_steps
|
9 |
+
- -1
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - learning_starts
|
13 |
+
- 10000
|
14 |
+
- - n_timesteps
|
15 |
+
- 1000000.0
|
16 |
+
- - noise_std
|
17 |
+
- 0.1
|
18 |
+
- - noise_type
|
19 |
+
- normal
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[400, 300])
|
24 |
+
- - train_freq
|
25 |
+
- - 1
|
26 |
+
- episode
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1052c4b11e090e9f88e7f214d6f0ae4217b288305b11e2ed88b980b95a8ccdf1
|
3 |
+
size 1085391
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2240.3392509, "std_reward": 19.517766948839043, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T16:18:57.582188"}
|
td3-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b200415bba5fdde0c4f6e92044107254402999337e74e48ebaede82cd34f28f
|
3 |
+
size 6393031
|
td3-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
td3-Walker2DBulletEnv-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f20e0868dc658fb8136fd0f09d8ae9ed93d2695b99b45c895f28d39d89b1c712
|
3 |
+
size 1056961
|
td3-Walker2DBulletEnv-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2226641978cf5b1c1b52aef00b92acd3de731f96113a3e1c12829581dbcaa1a5
|
3 |
+
size 2128029
|
td3-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x7fcac0941170>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x7fcac0941200>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fcac0941290>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x7fcac0941320>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x7fcac09413b0>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x7fcac0941440>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x7fcac09414d0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7fcac0941560>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc_data object at 0x7fcac093e1e0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
400,
|
22 |
+
300
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"observation_space": {
|
26 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
27 |
+
":serialized:": "gASVXwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxeFlGgLiUNcAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgLiUNcAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgpiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLF4WUdWIu",
|
28 |
+
"dtype": "float32",
|
29 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
|
30 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf 1.]",
|
31 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
|
32 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
|
33 |
+
"_np_random": null,
|
34 |
+
"_shape": [
|
35 |
+
23
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"action_space": {
|
39 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
40 |
+
":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
41 |
+
"dtype": "float32",
|
42 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
43 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
44 |
+
"bounded_below": "[ True True True True True True]",
|
45 |
+
"bounded_above": "[ True True True True True True]",
|
46 |
+
"_np_random": "RandomState(MT19937)",
|
47 |
+
"_shape": [
|
48 |
+
6
|
49 |
+
]
|
50 |
+
},
|
51 |
+
"n_envs": 1,
|
52 |
+
"num_timesteps": 970000,
|
53 |
+
"_total_timesteps": 1000000,
|
54 |
+
"_num_timesteps_at_start": 0,
|
55 |
+
"seed": 0,
|
56 |
+
"action_noise": {
|
57 |
+
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
|
58 |
+
":serialized:": "gASVVAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijAZfc2lnbWGUaAhoC0sAhZRoDYeUUpQoSwFLBoWUaBWJQzCamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+UdJRidWIu",
|
59 |
+
"_mu": "[0. 0. 0. 0. 0. 0.]",
|
60 |
+
"_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
|
61 |
+
},
|
62 |
+
"start_time": 1619623501.758226,
|
63 |
+
"learning_rate": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL25mcy9ocGMvc2hhcmUvZGFuZXNobS9ybC1iYXNlbGluZXMzLXpvby92ZW52L2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEt9QwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvbmZzL2hwYy9zaGFyZS9kYW5lc2htL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
66 |
+
},
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL25mcy9ocGMvc2hhcmUvZGFuZXNobS9ybC1iYXNlbGluZXMzLXpvby92ZW52L2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEt9QwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvbmZzL2hwYy9zaGFyZS9kYW5lc2htL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
71 |
+
},
|
72 |
+
"_last_obs": null,
|
73 |
+
"_last_episode_starts": null,
|
74 |
+
"_last_original_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gASV5gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLF4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNcLzfFvgAAAAAAAIA/aPTrPgAAAAABRy09AAAAANMlY7/VYcw+yVDdvUtuiL3A2kI+3ZSBP0rzQjvPZT8/4VxrPxpzq750LWu+mJJZPx8aYj4AAIA/AACAPzVe+j6UdJRiLg=="
|
77 |
+
},
|
78 |
+
"_episode_num": 3009,
|
79 |
+
"use_sde": false,
|
80 |
+
"sde_sample_freq": -1,
|
81 |
+
"_current_progress_remaining": 0.030001000000000055,
|
82 |
+
"ep_info_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBywuEmICWMAWyUTegDjAF0lEdAuYO9yOq//XV9lChoBkdAoJ5L2HtWuGgHTegDaAhHQLmKUsoUi6h1fZQoaAZHQEmurU9ZA6doB0skaAhHQLmPnWq94/x1fZQoaAZHQKDQSKVpsXVoB03oA2gIR0C5kSziXIEKdX2UKGgGR0BQNzGHYYixaAdLKmgIR0C5lovrjYI0dX2UKGgGR0BMogSeyzHCaAdLImgIR0C5ltACOmzjdX2UKGgGR0Cgwno4EOiGaAdN1wNoCEdAuZhFzEJjUnV9lChoBkdAn7Zf6CUX52gHTaYDaAhHQLmexjjaPCF1fZQoaAZHQIOtwEZBLPFoB002AWgIR0C5pBzefqX4dX2UKGgGR0Cb6LIfr8iwaAdNUgNoCEdAuababSZ0CHV9lChoBkdAoMtwwmE5AGgHTegDaAhHQLmsgOnl4kh1fZQoaAZHQKC1NpdKNAFoB03oA2gIR0C5v6zG96C2dX2UKGgGR0Bmvbfk3juKaAdLYmgIR0C5xR2smv4edX2UKGgGR0Ce0/R0EHMVaAdNzgNoCEdAucbqHmA9V3V9lChoBkdAn/oGtp22X2gHTegDaAhHQLnNQx1xKg91fZQoaAZHQHcy9gOSW7hoB0vFaAhHQLnSsxVQyh11fZQoaAZHQJ+8GVu76HloB03oA2gIR0C51RT63y7PdX2UKGgGR0CfhFFZxJd0aAdN6ANoCEdAudu/CoCMgnV9lChoBkdAg/a6nBLwnmgHTV0BaAhHQLnheDYh+v11fZQoaAZHQJ7JbQD3dsVoB03oA2gIR0C55KKB/ZuidX2UKGgGR0Ceavr7wazeaAdN5QNoCEdAuetNBjWkJ3V9lChoBkdAoATqxTsIFGgHTegDaAhHQLnx6xzJZGN1fZQoaAZHQJztfb/Ot4loB02rA2gIR0C5+IxlMAWBdX2UKGgGR0CfuOi704BFaAdN6ANoCEdAuf7USrYGuHV9lChoBkdAoATHqqwQlWgHTegDaAhHQLoRqmelKsd1fZQoaAZHQJtiXZi/fwZoB01TA2gIR0C6GDAsK9f1dX2UKGgGR0CP8eCbMHKPaAdNEQJoCEdAuh16ndfsu3V9lChoBkdAn7JqF7D2rWgHTegDaAhHQLohr5ckdFR1fZQoaAZHQJ4du/EfkmxoB03oA2gIR0C6KFUsrd30dX2UKGgGR0B9C1opQUHqaAdNDQFoCEdAui4H+vQnhXV9lChoBkdAnmJTmfXf7GgHTegDaAhHQLow2TBqKxd1fZQoaAZHQJcPbQBxPwdoB01IA2gIR0C6N0ytq59WdX2UKGgGR0CdachZQpF1aAdN6ANoCEdAuj0Ya99MK3V9lChoBkdAhQBqnm7rcGgHTVwBaAhHQLpC0JVsDW91fZQoaAZHQJE9My9EkSpoB00eAmgIR0C6RWywSrYHdX2UKGgGR0Cf5gmqHXVcaAdN6ANoCEdAukmuQvHtGHV9lChoBkdAn1kiLqD9O2gHTegDaAhHQLpbpZvDP4V1fZQoaAZHQJ3jH8O09hZoB03oA2gIR0C6Yl7iuMdcdX2UKGgGR0Cd/+krwvxpaAdN6ANoCEdAumj4H7gsLHV9lChoBkdAn5vsX3xnWmgHTd0DaAhHQLpvdkadc0N1fZQoaAZHQIyMLsQd0aJoB03cAWgIR0C6dUNHUc4pdX2UKGgGR0Cf0sFL39JjaAdN6ANoCEdAunkOSSvC/HV9lChoBkdAewbc4o7V8WgHS+RoCEdAun6hokAxSHV9lChoBkdAelIFN+LFXWgHS/ZoCEdAuoAn8AJb+3V9lChoBkdAoFMTwlSjxmgHTegDaAhHQLqCzHuJDVp1fZQoaAZHQKByOxA0KqpoB03oA2gIR0C6iWI0qH45dX2UKGgGR0CgTjIk7fYSaAdN6ANoCEdAuo/2O+7DmHV9lChoBkdAoCzROnEVFmgHTegDaAhHQLqWk2oNutR1fZQoaAZHQD+NtTDO1OVoB0sZaAhHQLqb1LWZqmF1fZQoaAZHQKBAbgmZ3LVoB03oA2gIR0C6pfIU8FINdX2UKGgGR0Cc1Mw22oegaAdNlANoCEdAuqxe2v0ROHV9lChoBkdAoEvJWT5ft2gHTegDaAhHQLqyeanrIHV1fZQoaAZHQKAsYDzyz5ZoB03oA2gIR0C6uRJdrwfAdX2UKGgGR0CgS0qU/wAmaAdN6ANoCEdAur+tFd9lVnV9lChoBkdAn2qCmuTzNGgHTaEDaAhHQLrGSRGMGX51fZQoaAZHQHbGSeI2wV1oB0u5aAhHQLrLg8HObAl1fZQoaAZHQJph7UMG5c1oB00QA2gIR0C6zYEhV2iddX2UKGgGR0CbzwJ1q33IaAdNUQNoCEdAutLEhePaMHV9lChoBkdAQFG938n/k2gHSx1oCEdAutdTokiUxHV9lChoBkdAgTziQDFId2gHTSABaAhHQLrX3cDKYAt1fZQoaAZHQII4S24NI9VoB00mAWgIR0C62dO0kWykdX2UKGgGR0CgcSrIo3JgaAdN6ANoCEdAuty81KoQ4HV9lChoBkdAeYgHWz4UOGgHS+JoCEdAuuJ8wDeTFHV9lChoBkdAgTKNga3qiWgHTTkBaAhHQLrkFkRzzVd1fZQoaAZHQKD1hKCg9NhoB03oA2gIR0C683nskY4ydX2UKGgGR0CgskcIRh+faAdN6ANoCEdAuvod1KXfInV9lChoBkdAnCPOBUaQ3mgHTVsDaAhHQLsAfK/Efkp1fZQoaAZHQKAAx0V8CxNoB03oA2gIR0C7BkAvlEJCdX2UKGgGR0Cf/cCAtnPFaAdN6ANoCEdAuwzjDrJKa3V9lChoBkdAOiTuF6AvtmgHSxtoCEdAuxIcbADaG3V9lChoBkdAiZ6Z/Tb35GgHTZ8BaAhHQLsSzlN1yNp1fZQoaAZHQJLJrrcCYC1oB01kAmgIR0C7Fcv/aQFLdX2UKGgGR0B04hmf5DZ2aAdLsGgIR0C7GVydrftQdX2UKGgGR0CgYupHiFTOaAdN6ANoCEdAuxua3NLUTnV9lChoBkdAoDP//tICl2gHTegDaAhHQLsiSv/zasZ1fZQoaAZHQIVSpKYiPhhoB01HAWgIR0C7J/rzkIX1dX2UKGgGR0CgweKmTC+DaAdN6ANoCEdAuysdEJBw/HV9lChoBkdAldeWzfJmumgHTcYCaAhHQLsxVBHkLhJ1fZQoaAZHQKCAf+qBErpoB03oA2gIR0C7QtFL39JjdX2UKGgGR0CgshFFc6eYaAdN6ANoCEdAu0ly1qnFYXV9lChoBkdAoNLpeokzGmgHTegDaAhHQLtP68c+7lJ1fZQoaAZHQKCfpUxVQyhoB03oA2gIR0C7VmNAxBVudX2UKGgGR0CgVRnww0wbaAdN6ANoCEdAu1zdR77bc3V9lChoBkdAoM6xreqJdmgHTegDaAhHQLtjcZ/Tb351fZQoaAZHQKAqk9cKPXFoB03oA2gIR0C7agRE0BOpdX2UKGgGR0CgRnHcUM5PaAdN6ANoCEdAu3CD5P/JeXV9lChoBkdAoDS51s+FDmgHTegDaAhHQLt3A1JDmbN1fZQoaAZHQJx/5DPWxyJoB03oA2gIR0C7fZYmTkhidX2UKGgGR0Cg3k3O4XoDaAdN6ANoCEdAu5BxFQVKw3V9lChoBkdAoRQIRXfZVWgHTegDaAhHQLuXAoePq9p1fZQoaAZHQJx8PvQWvbJoB003A2gIR0C7nWLFsHjZdX2UKGgGR0CLAkDJ2dNGaAdNmwFoCEdAu6JPvnbItHV9lChoBkdAoGa7DMvAXWgHTegDaAhHQLul5HSWqtJ1fZQoaAZHQKDuIr7wazhoB03oA2gIR0C7rIbhJiAldX2UKGgGR0CgID544ZMtaAdN6ANoCEdAu7MXHwPRRnV9lChoBkdAXxsHD7655WgHS1JoCEdAu7hvzshPkHV9lChoBkdAoIzLB42S+2gHTegDaAhHQLu6LliBoVV1fZQoaAZHQKBpBh/iHZdoB03oA2gIR0C7wLnUpd8idX2UKGgGR0ChDosRHww1aAdN6ANoCEdAu8ds5Lh73XV9lChoBkdAoNwcIw/PgWgHTegDaAhHQLvOBAUtZmt1ZS4="
|
85 |
+
},
|
86 |
+
"ep_success_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
89 |
+
},
|
90 |
+
"_n_updates": 959495,
|
91 |
+
"buffer_size": 1,
|
92 |
+
"batch_size": 100,
|
93 |
+
"learning_starts": 10000,
|
94 |
+
"tau": 0.005,
|
95 |
+
"gamma": 0.98,
|
96 |
+
"gradient_steps": -1,
|
97 |
+
"optimize_memory_usage": false,
|
98 |
+
"replay_buffer_class": {
|
99 |
+
":type:": "<class 'abc.ABCMeta'>",
|
100 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
101 |
+
"__module__": "stable_baselines3.common.buffers",
|
102 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
103 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fcac0dbeb90>",
|
104 |
+
"add": "<function ReplayBuffer.add at 0x7fcac0dbec20>",
|
105 |
+
"sample": "<function ReplayBuffer.sample at 0x7fcac09257a0>",
|
106 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fcac0925830>",
|
107 |
+
"__abstractmethods__": "frozenset()",
|
108 |
+
"_abc_impl": "<_abc_data object at 0x7fcac0e155d0>"
|
109 |
+
},
|
110 |
+
"replay_buffer_kwargs": {},
|
111 |
+
"train_freq": {
|
112 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
113 |
+
":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
114 |
+
},
|
115 |
+
"use_sde_at_warmup": false,
|
116 |
+
"policy_delay": 2,
|
117 |
+
"target_noise_clip": 0.5,
|
118 |
+
"target_policy_noise": 0.2,
|
119 |
+
"_last_dones": {
|
120 |
+
":type:": "<class 'numpy.ndarray'>",
|
121 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
122 |
+
},
|
123 |
+
"remove_time_limit_termination": false
|
124 |
+
}
|
td3-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89e2799189e8f05a4301559a03ec86add34afb7008daad9f56e2568fa8d3c28c
|
3 |
+
size 3187321
|
td3-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
td3-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82f0c3e960c8c98d76c5ed707945e3f026616169f11d98db3aed38192c30d8b0
|
3 |
+
size 97523
|