araffin commited on
Commit
20d404c
·
1 Parent(s): 9023ed5

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 2240.34 +/- 19.52
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: Walker2DBulletEnv-v0
20
+ type: Walker2DBulletEnv-v0
21
+ ---
22
+
23
+ # **TD3** Agent playing **Walker2DBulletEnv-v0**
24
+ This is a trained model of a **TD3** agent playing **Walker2DBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo td3 --env Walker2DBulletEnv-v0 -orga sb3 -f logs/
41
+ python enjoy.py --algo td3 --env Walker2DBulletEnv-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo td3 --env Walker2DBulletEnv-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo td3 --env Walker2DBulletEnv-v0 -f logs/ -orga sb3
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('buffer_size', 200000),
54
+ ('env_wrapper', 'sb3_contrib.common.wrappers.TimeFeatureWrapper'),
55
+ ('gamma', 0.98),
56
+ ('gradient_steps', -1),
57
+ ('learning_rate', 0.001),
58
+ ('learning_starts', 10000),
59
+ ('n_timesteps', 1000000.0),
60
+ ('noise_std', 0.1),
61
+ ('noise_type', 'normal'),
62
+ ('policy', 'MlpPolicy'),
63
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
64
+ ('train_freq', [1, 'episode']),
65
+ ('normalize', False)])
66
+ ```
args.yml ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - env
5
+ - Walker2DBulletEnv-v0
6
+ - - env_kwargs
7
+ - null
8
+ - - eval_episodes
9
+ - 10
10
+ - - eval_freq
11
+ - 10000
12
+ - - gym_packages
13
+ - []
14
+ - - hyperparams
15
+ - null
16
+ - - log_folder
17
+ - logs
18
+ - - log_interval
19
+ - -1
20
+ - - n_evaluations
21
+ - 20
22
+ - - n_jobs
23
+ - 1
24
+ - - n_startup_trials
25
+ - 10
26
+ - - n_timesteps
27
+ - -1
28
+ - - n_trials
29
+ - 10
30
+ - - num_threads
31
+ - -1
32
+ - - optimize_hyperparameters
33
+ - false
34
+ - - pruner
35
+ - median
36
+ - - sampler
37
+ - tpe
38
+ - - save_freq
39
+ - 100000
40
+ - - save_replay_buffer
41
+ - false
42
+ - - seed
43
+ - 3495187209
44
+ - - storage
45
+ - null
46
+ - - study_name
47
+ - null
48
+ - - tensorboard_log
49
+ - ''
50
+ - - trained_agent
51
+ - ''
52
+ - - truncate_last_trajectory
53
+ - true
54
+ - - uuid
55
+ - false
56
+ - - vec_env
57
+ - dummy
58
+ - - verbose
59
+ - 1
config.yml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - env_wrapper
5
+ - sb3_contrib.common.wrappers.TimeFeatureWrapper
6
+ - - gamma
7
+ - 0.98
8
+ - - gradient_steps
9
+ - -1
10
+ - - learning_rate
11
+ - 0.001
12
+ - - learning_starts
13
+ - 10000
14
+ - - n_timesteps
15
+ - 1000000.0
16
+ - - noise_std
17
+ - 0.1
18
+ - - noise_type
19
+ - normal
20
+ - - policy
21
+ - MlpPolicy
22
+ - - policy_kwargs
23
+ - dict(net_arch=[400, 300])
24
+ - - train_freq
25
+ - - 1
26
+ - episode
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1052c4b11e090e9f88e7f214d6f0ae4217b288305b11e2ed88b980b95a8ccdf1
3
+ size 1085391
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2240.3392509, "std_reward": 19.517766948839043, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T16:18:57.582188"}
td3-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b200415bba5fdde0c4f6e92044107254402999337e74e48ebaede82cd34f28f
3
+ size 6393031
td3-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
td3-Walker2DBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f20e0868dc658fb8136fd0f09d8ae9ed93d2695b99b45c895f28d39d89b1c712
3
+ size 1056961
td3-Walker2DBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2226641978cf5b1c1b52aef00b92acd3de731f96113a3e1c12829581dbcaa1a5
3
+ size 2128029
td3-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7fcac0941170>",
8
+ "_build": "<function TD3Policy._build at 0x7fcac0941200>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7fcac0941290>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7fcac0941320>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7fcac09413b0>",
12
+ "forward": "<function TD3Policy.forward at 0x7fcac0941440>",
13
+ "_predict": "<function TD3Policy._predict at 0x7fcac09414d0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7fcac0941560>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc_data object at 0x7fcac093e1e0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ]
24
+ },
25
+ "observation_space": {
26
+ ":type:": "<class 'gym.spaces.box.Box'>",
27
+ ":serialized:": "gASVXwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxeFlGgLiUNcAACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAAACUdJRijARoaWdolGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgLiUNcAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSxeFlGgpiUMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLF4WUdWIu",
28
+ "dtype": "float32",
29
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf 0.]",
30
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf 1.]",
31
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
32
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False True]",
33
+ "_np_random": null,
34
+ "_shape": [
35
+ 23
36
+ ]
37
+ },
38
+ "action_space": {
39
+ ":type:": "<class 'gym.spaces.box.Box'>",
40
+ ":serialized:": "gASVRQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgLiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEWgTSwCFlGgVh5RSlChLAUsGhZRoC4lDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBFoE0sAhZRoFYeUUpQoSwFLBoWUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgRaBNLAIWUaBWHlFKUKEsBSwaFlGgpiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDmMBXN0YXRllH2UKIwDa2V5lGgRaBNLAIWUaBWHlFKUKEsBTXAChZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
41
+ "dtype": "float32",
42
+ "low": "[-1. -1. -1. -1. -1. -1.]",
43
+ "high": "[1. 1. 1. 1. 1. 1.]",
44
+ "bounded_below": "[ True True True True True True]",
45
+ "bounded_above": "[ True True True True True True]",
46
+ "_np_random": "RandomState(MT19937)",
47
+ "_shape": [
48
+ 6
49
+ ]
50
+ },
51
+ "n_envs": 1,
52
+ "num_timesteps": 970000,
53
+ "_total_timesteps": 1000000,
54
+ "_num_timesteps_at_start": 0,
55
+ "seed": 0,
56
+ "action_noise": {
57
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
58
+ ":serialized:": "gASVVAEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5SMBW51bXB5lIwHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoCYwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijAZfc2lnbWGUaAhoC0sAhZRoDYeUUpQoSwFLBoWUaBWJQzCamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+UdJRidWIu",
59
+ "_mu": "[0. 0. 0. 0. 0. 0.]",
60
+ "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]"
61
+ },
62
+ "start_time": 1619623501.758226,
63
+ "learning_rate": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL25mcy9ocGMvc2hhcmUvZGFuZXNobS9ybC1iYXNlbGluZXMzLXpvby92ZW52L2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEt9QwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvbmZzL2hwYy9zaGFyZS9kYW5lc2htL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
66
+ },
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gASVBQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxrL25mcy9ocGMvc2hhcmUvZGFuZXNobS9ybC1iYXNlbGluZXMzLXpvby92ZW52L2xpYi9weXRob24zLjYvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEt9QwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGsvbmZzL2hwYy9zaGFyZS9kYW5lc2htL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuNi9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": null,
73
+ "_last_episode_starts": null,
74
+ "_last_original_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gASV5gAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLF4aUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUNcLzfFvgAAAAAAAIA/aPTrPgAAAAABRy09AAAAANMlY7/VYcw+yVDdvUtuiL3A2kI+3ZSBP0rzQjvPZT8/4VxrPxpzq750LWu+mJJZPx8aYj4AAIA/AACAPzVe+j6UdJRiLg=="
77
+ },
78
+ "_episode_num": 3009,
79
+ "use_sde": false,
80
+ "sde_sample_freq": -1,
81
+ "_current_progress_remaining": 0.030001000000000055,
82
+ "ep_info_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gASVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKBywuEmICWMAWyUTegDjAF0lEdAuYO9yOq//XV9lChoBkdAoJ5L2HtWuGgHTegDaAhHQLmKUsoUi6h1fZQoaAZHQEmurU9ZA6doB0skaAhHQLmPnWq94/x1fZQoaAZHQKDQSKVpsXVoB03oA2gIR0C5kSziXIEKdX2UKGgGR0BQNzGHYYixaAdLKmgIR0C5lovrjYI0dX2UKGgGR0BMogSeyzHCaAdLImgIR0C5ltACOmzjdX2UKGgGR0Cgwno4EOiGaAdN1wNoCEdAuZhFzEJjUnV9lChoBkdAn7Zf6CUX52gHTaYDaAhHQLmexjjaPCF1fZQoaAZHQIOtwEZBLPFoB002AWgIR0C5pBzefqX4dX2UKGgGR0Cb6LIfr8iwaAdNUgNoCEdAuababSZ0CHV9lChoBkdAoMtwwmE5AGgHTegDaAhHQLmsgOnl4kh1fZQoaAZHQKC1NpdKNAFoB03oA2gIR0C5v6zG96C2dX2UKGgGR0Bmvbfk3juKaAdLYmgIR0C5xR2smv4edX2UKGgGR0Ce0/R0EHMVaAdNzgNoCEdAucbqHmA9V3V9lChoBkdAn/oGtp22X2gHTegDaAhHQLnNQx1xKg91fZQoaAZHQHcy9gOSW7hoB0vFaAhHQLnSsxVQyh11fZQoaAZHQJ+8GVu76HloB03oA2gIR0C51RT63y7PdX2UKGgGR0CfhFFZxJd0aAdN6ANoCEdAudu/CoCMgnV9lChoBkdAg/a6nBLwnmgHTV0BaAhHQLnheDYh+v11fZQoaAZHQJ7JbQD3dsVoB03oA2gIR0C55KKB/ZuidX2UKGgGR0Ceavr7wazeaAdN5QNoCEdAuetNBjWkJ3V9lChoBkdAoATqxTsIFGgHTegDaAhHQLnx6xzJZGN1fZQoaAZHQJztfb/Ot4loB02rA2gIR0C5+IxlMAWBdX2UKGgGR0CfuOi704BFaAdN6ANoCEdAuf7USrYGuHV9lChoBkdAoATHqqwQlWgHTegDaAhHQLoRqmelKsd1fZQoaAZHQJtiXZi/fwZoB01TA2gIR0C6GDAsK9f1dX2UKGgGR0CP8eCbMHKPaAdNEQJoCEdAuh16ndfsu3V9lChoBkdAn7JqF7D2rWgHTegDaAhHQLohr5ckdFR1fZQoaAZHQJ4du/EfkmxoB03oA2gIR0C6KFUsrd30dX2UKGgGR0B9C1opQUHqaAdNDQFoCEdAui4H+vQnhXV9lChoBkdAnmJTmfXf7GgHTegDaAhHQLow2TBqKxd1fZQoaAZHQJcPbQBxPwdoB01IA2gIR0C6N0ytq59WdX2UKGgGR0CdachZQpF1aAdN6ANoCEdAuj0Ya99MK3V9lChoBkdAhQBqnm7rcGgHTVwBaAhHQLpC0JVsDW91fZQoaAZHQJE9My9EkSpoB00eAmgIR0C6RWywSrYHdX2UKGgGR0Cf5gmqHXVcaAdN6ANoCEdAukmuQvHtGHV9lChoBkdAn1kiLqD9O2gHTegDaAhHQLpbpZvDP4V1fZQoaAZHQJ3jH8O09hZoB03oA2gIR0C6Yl7iuMdcdX2UKGgGR0Cd/+krwvxpaAdN6ANoCEdAumj4H7gsLHV9lChoBkdAn5vsX3xnWmgHTd0DaAhHQLpvdkadc0N1fZQoaAZHQIyMLsQd0aJoB03cAWgIR0C6dUNHUc4pdX2UKGgGR0Cf0sFL39JjaAdN6ANoCEdAunkOSSvC/HV9lChoBkdAewbc4o7V8WgHS+RoCEdAun6hokAxSHV9lChoBkdAelIFN+LFXWgHS/ZoCEdAuoAn8AJb+3V9lChoBkdAoFMTwlSjxmgHTegDaAhHQLqCzHuJDVp1fZQoaAZHQKByOxA0KqpoB03oA2gIR0C6iWI0qH45dX2UKGgGR0CgTjIk7fYSaAdN6ANoCEdAuo/2O+7DmHV9lChoBkdAoCzROnEVFmgHTegDaAhHQLqWk2oNutR1fZQoaAZHQD+NtTDO1OVoB0sZaAhHQLqb1LWZqmF1fZQoaAZHQKBAbgmZ3LVoB03oA2gIR0C6pfIU8FINdX2UKGgGR0Cc1Mw22oegaAdNlANoCEdAuqxe2v0ROHV9lChoBkdAoEvJWT5ft2gHTegDaAhHQLqyeanrIHV1fZQoaAZHQKAsYDzyz5ZoB03oA2gIR0C6uRJdrwfAdX2UKGgGR0CgS0qU/wAmaAdN6ANoCEdAur+tFd9lVnV9lChoBkdAn2qCmuTzNGgHTaEDaAhHQLrGSRGMGX51fZQoaAZHQHbGSeI2wV1oB0u5aAhHQLrLg8HObAl1fZQoaAZHQJph7UMG5c1oB00QA2gIR0C6zYEhV2iddX2UKGgGR0CbzwJ1q33IaAdNUQNoCEdAutLEhePaMHV9lChoBkdAQFG938n/k2gHSx1oCEdAutdTokiUxHV9lChoBkdAgTziQDFId2gHTSABaAhHQLrX3cDKYAt1fZQoaAZHQII4S24NI9VoB00mAWgIR0C62dO0kWykdX2UKGgGR0CgcSrIo3JgaAdN6ANoCEdAuty81KoQ4HV9lChoBkdAeYgHWz4UOGgHS+JoCEdAuuJ8wDeTFHV9lChoBkdAgTKNga3qiWgHTTkBaAhHQLrkFkRzzVd1fZQoaAZHQKD1hKCg9NhoB03oA2gIR0C683nskY4ydX2UKGgGR0CgskcIRh+faAdN6ANoCEdAuvod1KXfInV9lChoBkdAnCPOBUaQ3mgHTVsDaAhHQLsAfK/Efkp1fZQoaAZHQKAAx0V8CxNoB03oA2gIR0C7BkAvlEJCdX2UKGgGR0Cf/cCAtnPFaAdN6ANoCEdAuwzjDrJKa3V9lChoBkdAOiTuF6AvtmgHSxtoCEdAuxIcbADaG3V9lChoBkdAiZ6Z/Tb35GgHTZ8BaAhHQLsSzlN1yNp1fZQoaAZHQJLJrrcCYC1oB01kAmgIR0C7Fcv/aQFLdX2UKGgGR0B04hmf5DZ2aAdLsGgIR0C7GVydrftQdX2UKGgGR0CgYupHiFTOaAdN6ANoCEdAuxua3NLUTnV9lChoBkdAoDP//tICl2gHTegDaAhHQLsiSv/zasZ1fZQoaAZHQIVSpKYiPhhoB01HAWgIR0C7J/rzkIX1dX2UKGgGR0CgweKmTC+DaAdN6ANoCEdAuysdEJBw/HV9lChoBkdAldeWzfJmumgHTcYCaAhHQLsxVBHkLhJ1fZQoaAZHQKCAf+qBErpoB03oA2gIR0C7QtFL39JjdX2UKGgGR0CgshFFc6eYaAdN6ANoCEdAu0ly1qnFYXV9lChoBkdAoNLpeokzGmgHTegDaAhHQLtP68c+7lJ1fZQoaAZHQKCfpUxVQyhoB03oA2gIR0C7VmNAxBVudX2UKGgGR0CgVRnww0wbaAdN6ANoCEdAu1zdR77bc3V9lChoBkdAoM6xreqJdmgHTegDaAhHQLtjcZ/Tb351fZQoaAZHQKAqk9cKPXFoB03oA2gIR0C7agRE0BOpdX2UKGgGR0CgRnHcUM5PaAdN6ANoCEdAu3CD5P/JeXV9lChoBkdAoDS51s+FDmgHTegDaAhHQLt3A1JDmbN1fZQoaAZHQJx/5DPWxyJoB03oA2gIR0C7fZYmTkhidX2UKGgGR0Cg3k3O4XoDaAdN6ANoCEdAu5BxFQVKw3V9lChoBkdAoRQIRXfZVWgHTegDaAhHQLuXAoePq9p1fZQoaAZHQJx8PvQWvbJoB003A2gIR0C7nWLFsHjZdX2UKGgGR0CLAkDJ2dNGaAdNmwFoCEdAu6JPvnbItHV9lChoBkdAoGa7DMvAXWgHTegDaAhHQLul5HSWqtJ1fZQoaAZHQKDuIr7wazhoB03oA2gIR0C7rIbhJiAldX2UKGgGR0CgID544ZMtaAdN6ANoCEdAu7MXHwPRRnV9lChoBkdAXxsHD7655WgHS1JoCEdAu7hvzshPkHV9lChoBkdAoIzLB42S+2gHTegDaAhHQLu6LliBoVV1fZQoaAZHQKBpBh/iHZdoB03oA2gIR0C7wLnUpd8idX2UKGgGR0ChDosRHww1aAdN6ANoCEdAu8ds5Lh73XV9lChoBkdAoNwcIw/PgWgHTegDaAhHQLvOBAUtZmt1ZS4="
85
+ },
86
+ "ep_success_buffer": {
87
+ ":type:": "<class 'collections.deque'>",
88
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
89
+ },
90
+ "_n_updates": 959495,
91
+ "buffer_size": 1,
92
+ "batch_size": 100,
93
+ "learning_starts": 10000,
94
+ "tau": 0.005,
95
+ "gamma": 0.98,
96
+ "gradient_steps": -1,
97
+ "optimize_memory_usage": false,
98
+ "replay_buffer_class": {
99
+ ":type:": "<class 'abc.ABCMeta'>",
100
+ ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
101
+ "__module__": "stable_baselines3.common.buffers",
102
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
103
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fcac0dbeb90>",
104
+ "add": "<function ReplayBuffer.add at 0x7fcac0dbec20>",
105
+ "sample": "<function ReplayBuffer.sample at 0x7fcac09257a0>",
106
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fcac0925830>",
107
+ "__abstractmethods__": "frozenset()",
108
+ "_abc_impl": "<_abc_data object at 0x7fcac0e155d0>"
109
+ },
110
+ "replay_buffer_kwargs": {},
111
+ "train_freq": {
112
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
113
+ ":serialized:": "gASVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
114
+ },
115
+ "use_sde_at_warmup": false,
116
+ "policy_delay": 2,
117
+ "target_noise_clip": 0.5,
118
+ "target_policy_noise": 0.2,
119
+ "_last_dones": {
120
+ ":type:": "<class 'numpy.ndarray'>",
121
+ ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
122
+ },
123
+ "remove_time_limit_termination": false
124
+ }
td3-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89e2799189e8f05a4301559a03ec86add34afb7008daad9f56e2568fa8d3c28c
3
+ size 3187321
td3-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
2
+ Python: 3.7.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0
5
+ GPU Enabled: True
6
+ Numpy: 1.21.2
7
+ Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82f0c3e960c8c98d76c5ed707945e3f026616169f11d98db3aed38192c30d8b0
3
+ size 97523