Antonin Raffin
commited on
Commit
·
e3c3ce9
1
Parent(s):
a127ed0
Initial commit
Browse files- .gitattributes +1 -0
- README.md +57 -0
- args.yml +65 -0
- config.yml +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-Humanoid-v3.zip +3 -0
- tqc-Humanoid-v3/_stable_baselines3_version +1 -0
- tqc-Humanoid-v3/actor.optimizer.pth +3 -0
- tqc-Humanoid-v3/critic.optimizer.pth +3 -0
- tqc-Humanoid-v3/data +114 -0
- tqc-Humanoid-v3/ent_coef_optimizer.pth +3 -0
- tqc-Humanoid-v3/policy.pth +3 -0
- tqc-Humanoid-v3/pytorch_variables.pth +3 -0
- tqc-Humanoid-v3/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Humanoid-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 6866.00 +/- 2055.03
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Humanoid-v3
|
20 |
+
type: Humanoid-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **Humanoid-v3**
|
24 |
+
This is a trained model of a **TQC** agent playing **Humanoid-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo tqc --env Humanoid-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo tqc --env Humanoid-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo tqc --env Humanoid-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo tqc --env Humanoid-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('learning_starts', 10000),
|
54 |
+
('n_timesteps', 2000000.0),
|
55 |
+
('policy', 'MlpPolicy'),
|
56 |
+
('normalize', False)])
|
57 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - env
|
5 |
+
- Humanoid-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs/
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 5
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- 2
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 594371
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- true
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - learning_starts
|
3 |
+
- 10000
|
4 |
+
- - n_timesteps
|
5 |
+
- 2000000.0
|
6 |
+
- - policy
|
7 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47b3c590a7b0d27d90d07f2ce34ec7925facf35f9215f50ea3bc09caed0f670b
|
3 |
+
size 1332650
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 6865.9989038, "std_reward": 2055.0323654271883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T20:48:07.946466"}
|
tqc-Humanoid-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e382d01303e28bd2b562c27a01910ae2de11eb50161782d1bb489165c959116
|
3 |
+
size 7656224
|
tqc-Humanoid-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
tqc-Humanoid-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ef983f5081f8e05fa85fe39d08fc2ab4627b92eb557a0514159d2db89c4d997
|
3 |
+
size 1372725
|
tqc-Humanoid-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:827c35583870f02581e07d4f749f007a1cf3b113f918448777ceba0dfe3cf560
|
3 |
+
size 2775709
|
tqc-Humanoid-v3/data
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7f634f3e4710>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7f634f3e47a0>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f634f3e4830>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f634f3e48c0>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7f634f3e4950>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7f634f3e49e0>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7f634f3e4a70>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7f634f3e4b00>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f634f3e4b90>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7f634f444690>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASV9BsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBTXgBhZRoColCwAsAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAU14AYWUaAqJQsALAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFNeAGFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUJ4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMDWJvdW5kZWRfYWJvdmWUaBBoEksAhZRoFIeUUpQoSwFNeAGFlGgoiUJ4AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGKMCl9ucF9yYW5kb22UTowGX3NoYXBllE14AYWUdWIu",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
376
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVrQwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxGFlGgKiUNEzczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL7NzMy+zczMvs3MzL6UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSxGFlGgKiUNEzczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD7NzMw+zczMPs3MzD6UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSxGFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMRAQEBAQEBAQEBAQEBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSxGFlGgoiUMRAQEBAQEBAQEBAQEBAQEBAQGUdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoOIwFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSxGFlHViLg==",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4\n -0.4 -0.4 -0.4]",
|
41 |
+
"high": "[0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4]",
|
42 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True]",
|
43 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
17
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 2000000,
|
51 |
+
"_total_timesteps": 2000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1635497904.173087,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gASVywIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxOL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvcmwvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": null,
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRiLg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gASVTgwAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFNeAGGlGgDjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYolCwAsAAOP48g3F5vI/ZftLaUH86D+/KiQJYZDAPxjM9LHpcN4/kqGV392R2L/QVwCLoMLYP9mHjy96ZvW/qGUakwd3sL9j0fNZXZyvP8DDufORleQ/u+/lMm61yT916f9uQh7Vv9var/Vmm82/yvqXT5D06b+Nf00qstenPxsKYD+aj+u/eOl5pe0R8T+/LWb3U+TvPyR2Xt6XK+w/AvX91Wk/2D/MbpJclz/TvwdHXQKkCew/x130VhT/AEAuHXOK/vDgv1pG+MnYGe4/oAMFLY74CEBVNCi9NTgAwEO6zbdBsQJAgbtIGFLkFMDz37Cf47/iP6FvaIkiuxBAjG2SLZSx0r/C4yPu3aS1v6ZlY0HCDxDAoonDJDuFNsCDRKO3W4sZwAYywm1IeCfAlgyoam7OM0CMhHMnC/A6QLzXmlRyOuK/GYShwdi/8b9gw9f0l4bCv88lxyw9Yva/Gn7v/rgCC0CM6+vgdQ+NPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfB00yWa+D8LRJT60SX4PyOVZ8+zQ8Y/ow/pJQz9qj96XkIVitS5v7VU7RplB9I/CueQUBVgwz9LSdSIsBzjv8gJWTyhQQtAw47eh+ekIEDPJk2jYBHAP9NZXvo5OsI/hiPc+mDvpD9GFiPR/6eJPybrlCVpUas/sBWZNV69nr9QuMq9WVzNvzshnqkrJcA/81yqGPKA3j/9PYRdOEkAQK4rOaFom7U/YZqvdOJztz94Mwcteyq3P1rvkqL6wZM/95KvnkJEnz+eU1Iynyybv0YIIHDUutu/H5DYINlk1j87PPOiGyfbPxwZbgZBaRdAEqWdMYoCxD8/RaTQi+PGP5z/tyurkKc/8o/uS2Xkjb/cBBJlSgilv+UcRdRQ2pu/c+BghQYf17+xvtq1dc/Hv21cTYTT6eO/e/BsaysaEkCNGJgXuYHnP7DW9wDBvec/vMPstzzVnD8KXaHncEWIv60c6sQ0pru/qpdwziFdtL9Ilk++7cXJv+kuaXSucMO/LxeQV2mx9b9vu1s8WQ8FQEG0UPmaCO0/9Kmi/ih47T8D0hXZU3qhP8RF/vuWjou/T7/j843qwb/FUPK/5Aa2v04kccuiLMm/uRypDEvzvr/5hi32Vx/0v7uyzL46Rvw/ALQoKuEnxz+rZF0MUVTCP+2NENvbz78/hsdTivYOqb88Z6Af6T6uP05T4FJHN7A/m5w8stiV1z/zAdPJJd7iP85qtzqEFd6/e/BsaysaEkAdycKUh03jPxJgWoQw4+I/pY4lj/nDsj+67TO3+qWgv0OnJdqot7o/GMakE4bXwj+7XrQcwiDQPwH05vTWHtU/lvbAK5AK879vu1s8WQ8FQJhCkDvOauc/FdVdF0nE5j/nK3r/pV2ZPyf0m1xe+GG/j2ZEajRZij8mghIT+t6+P7AK2uoS05Q/yWX7ih5myD/+FYHGIOPxv7uyzL46Rvw/NIoF7iGSzj/fyjDVaXnHP7CVUObpi7A/WrxW/ULufL+Amdl4cmeRP3e4hb96ubk/CdEOLK0Yor/bwnTt0bDTv5wgQ0hFl+A/bPx15ESB+T+/8YrtF1fNPwqJEcVhnMQ/UaHwYUAtsj8kOG/Utp5vPw3Sv6gYxHC/sFzaIDaeuj/1lZZrTiiUPwvXg0SvUdK/Sci9DK8G2z/D3rPYaSzzP7/V3OuAesE/v7XRpG5uzD+WA+j8e4S4P9hX5qyYgZS//pb8MQrHuL+0kkqgHIiVv1PGY4NXstc/dWgGm6TftD87tGYTekXcP2z8deREgfk/hogwfsHVuD8pvgIkjojEP5S2td1X/bE/bPx3pXttUD8SC5M80dyxv8rUNGCZVoI/xTXErrKb0T+ZrmfoLEySv0IpQPQos9Q/w96z2Gks8z8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADMnd9NC5jqP/T9WwjZsRDAt93jIzqU8b+GXq+50FcOQIyzy/4vlsu/4LNmGnww8D+AQXCR9JgBwFjBmdqXBei/pTtvWnmvDcBIdhxkp+UEQES4oHZvZ/e/QXH6p5nq5z98loarcPjsPy9CGbEe5gnAMDoLLQ4yA8CfZLpw//QIQIxDjUeUz+m/9R+IidVH6T/TpRMW30XlP2BDkYFMThzALicHnd+2AsC3fwPx8t8JQBEvunpK1+m/W+MemRYF8z+eZcyei6rvP7Ae5Yer0C5Akhozg0f7DMBbsuwEjjwmQA308yf3Ye+/kOKd8iEzwz+eZcyei6rvP7Ae5Yer0C5Akhozg0f7DMBbsuwEjjwmQA308yf3Ye+/kOKd8iEzwz8fl3vcogkKwGwyYhxBBydAuphs6If0I0Bo2F8/YBYPQFbKHN+/2fK/tdi2vdLY9z9Cu4zk1yH9P6rebLpn4y3ALQhmz9NYJECkN9xVZuUPwF4VPVzLzwXAtChPH0YvDcBCu4zk1yH9P6rebLpn4y3ALQhmz9NYJECkN9xVZuUPwF4VPVzLzwXAtChPH0YvDcCpIpFwHL7wP3UKpxgpfAnAp7jmUCk02L8Yd7dQcK4JQEgLHUS9i6u/7BLx9fja7j/uxsM4OhzyPwUFiQhypwjA6ffTewvB1L/xHSoPj3QJQH4BQTjWpaW/5y31+UaU7z8WunakRgILQMF/CClA7AnAB6l/1GuT9T9WK9oL6gUMQIaA0mvOhNk/Kkr/JjtE8T9Gjj6BP+oKQNvAcx2D6QnAF+PQJydz9T9Z0aqdSgQMQOKuKUwnldk/pWoNGMJJ8T8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFPAJCwAAAAGdYyzXAAAAAOMdLGcAAAAC0UbQjQAAAAKWP80NAAAAAX3n0RMAAAACQGP1TwAAAALvbAULAAAAA/u/kQ8AAAIDKOdZdQAAAANsyr1BAAAAAyYF7IUAAAADAnL7rvwAAAK9xcSNAAAAAb21HI0AAAADQ0IjsvwAAAKkWXyNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYi4="
|
70 |
+
},
|
71 |
+
"_episode_num": 4760,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.0,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gASVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfjfdshuVvkCUhpRSlIwBbJRN6AOMAXSUR0Df5L+bjLjhdX2UKGgGaAloD0MIuaZAZvdLvkCUhpRSlGgVTegDaBZHQN/opp13dKx1fZQoaAZoCWgPQwguPC8V0zS+QJSGlFKUaBVN6ANoFkdA3+xjEeyRjnV9lChoBmgJaA9DCL+6KlAL5XdAlIaUUpRoFUtEaBZHQN/sozx9XtB1fZQoaAZoCWgPQwjEXFK1xQWqQJSGlFKUaBVNugFoFkdA3/NJ+pfhM3V9lChoBmgJaA9DCBKFlnWH5r1AlIaUUpRoFU3oA2gWR0Df9yrf+CK8dX2UKGgGaAloD0MI6GuWyz4EokCUhpRSlGgVTUEBaBZHQN/4bZn+Q2d1fZQoaAZoCWgPQwiNXaJ66wOHQJSGlFKUaBVLhWgWR0Df+O4txuKodX2UKGgGaAloD0MIbcX+sj9jvkCUhpRSlGgVTegDaBZHQN/8yvi5uqF1fZQoaAZoCWgPQwjQfM7d9q+9QJSGlFKUaBVN6ANoFkdA4ABSgtWdVnV9lChoBmgJaA9DCPTdrSzJI71AlIaUUpRoFU3QA2gWR0DgAjdhDw6RdX2UKGgGaAloD0MI51YIq3H6gkCUhpRSlGgVS2hoFkdA4AJpKcEvCnV9lChoBmgJaA9DCJY/3xZIp75AlIaUUpRoFU3oA2gWR0DgBDibUgB+dX2UKGgGaAloD0MIpb+XwouTvkCUhpRSlGgVTegDaBZHQOAGDA065oZ1fZQoaAZoCWgPQwiM8zehlJC+QJSGlFKUaBVN6ANoFkdA4AfglSKm9HV9lChoBmgJaA9DCOutga2iCb5AlIaUUpRoFU3oA2gWR0DgCc3hJiAldX2UKGgGaAloD0MI83SuKCFNtkCUhpRSlGgVTeUCaBZHQOALNDrgOz91fZQoaAZoCWgPQwgqHEEqVb6gQJSGlFKUaBVNLQFoFkdA4AvFGzByj3V9lChoBmgJaA9DCD+PUZ7Nmb5AlIaUUpRoFU3oA2gWR0DgEDDnIQvpdX2UKGgGaAloD0MISOAPP1vlvkCUhpRSlGgVTegDaBZHQOASINev6j51fZQoaAZoCWgPQwju68A5u0mkQJSGlFKUaBVNbQFoFkdA4BLVuD8Lr3V9lChoBmgJaA9DCNRH4A8fcr5AlIaUUpRoFU3oA2gWR0DgFLwW8h9tdX2UKGgGaAloD0MIufqxSS5RuECUhpRSlGgVTToDaBZHQOAWWHxri2l1fZQoaAZoCWgPQwiLijidYKy+QJSGlFKUaBVN6ANoFkdA4Bg+NGEwnHV9lChoBmgJaA9DCPLuyFgdpL5AlIaUUpRoFU3oA2gWR0DgGjbXrdFfdX2UKGgGaAloD0MIK9mxEdS0vkCUhpRSlGgVTegDaBZHQOAcDisjmjl1fZQoaAZoCWgPQwitbB/yAuK+QJSGlFKUaBVN6ANoFkdA4B30TM7lrHV9lChoBmgJaA9DCFTkEHH3GrBAlIaUUpRoFU0gAmgWR0DgHvdIxxkvdX2UKGgGaAloD0MIEf+wpXvYvkCUhpRSlGgVTegDaBZHQOAgpl09yLh1fZQoaAZoCWgPQwitUKT78fqrQJSGlFKUaBVN4QFoFkdA4CF375Ec83V9lChoBmgJaA9DCDnulA5Gj75AlIaUUpRoFU3oA2gWR0DgJbucJ+lTdX2UKGgGaAloD0MIgNQmTu4LuECUhpRSlGgVTSoDaBZHQOAnQNb1RLt1fZQoaAZoCWgPQwjvkjgrbpG+QJSGlFKUaBVN6ANoFkdA4Ckgw/X5FnV9lChoBmgJaA9DCMmutIzoRb5AlIaUUpRoFU3oA2gWR0DgKvdnX/YKdX2UKGgGaAloD0MIR8fVyJanvkCUhpRSlGgVTegDaBZHQOAsyBKxs2x1fZQoaAZoCWgPQwj1Lt6POxK/QJSGlFKUaBVN6ANoFkdA4C612kzoEHV9lChoBmgJaA9DCL74oj0Gcr5AlIaUUpRoFU3oA2gWR0DgMKTPmgandX2UKGgGaAloD0MIvJS6ZFTpuECUhpRSlGgVTUEDaBZHQOAyQuQQtjF1fZQoaAZoCWgPQwiM2v0qoGO+QJSGlFKUaBVN6ANoFkdA4DQjimuTzXV9lChoBmgJaA9DCGQe+YPtrb5AlIaUUpRoFU3oA2gWR0DgNgVrfLs9dX2UKGgGaAloD0MImwKZnRmIvkCUhpRSlGgVTegDaBZHQOA6uuG0u151fZQoaAZoCWgPQwihvmVOc0q5QJSGlFKUaBVNSwNoFkdA4DxeOqvNeXV9lChoBmgJaA9DCAngZvGyGphAlIaUUpRoFUvdaBZHQOA8zg6ltTF1fZQoaAZoCWgPQwiOrWcIP2O+QJSGlFKUaBVN6ANoFkdA4D6x6P8ye3V9lChoBmgJaA9DCKiq0ECgwr5AlIaUUpRoFU3oA2gWR0DgQKjqC6H1dX2UKGgGaAloD0MIrkfhejymvkCUhpRSlGgVTegDaBZHQOBCj8/KQq91fZQoaAZoCWgPQwjJWG3+B8ShQJSGlFKUaBVNOAFoFkdA4EMpAdfb9XV9lChoBmgJaA9DCAH76NTRzL5AlIaUUpRoFU3oA2gWR0DgRQ66oVEedX2UKGgGaAloD0MItObHX4IhvkCUhpRSlGgVTegDaBZHQOBG6sF6iTN1fZQoaAZoCWgPQwgg66nVGw6+QJSGlFKUaBVN6ANoFkdA4EirPnSv1XV9lChoBmgJaA9DCDscXaUzEbpAlIaUUpRoFU15A2gWR0DgSlfihFmWdX2UKGgGaAloD0MI6zu/KOHWvkCUhpRSlGgVTegDaBZHQOBMR3iLl3h1fZQoaAZoCWgPQwjSi9r9noSyQJSGlFKUaBVNbgJoFkdA4E+htEw353V9lChoBmgJaA9DCBYzwttzz5NAlIaUUpRoFUu6aBZHQOBP92A/cFh1fZQoaAZoCWgPQwiiemtg27++QJSGlFKUaBVN6ANoFkdA4FHfvVEux3V9lChoBmgJaA9DCDyfAfVmIq9AlIaUUpRoFU0KAmgWR0DgUuPUR3/xdX2UKGgGaAloD0MIs3ixMAiMvkCUhpRSlGgVTegDaBZHQOBU1wH1OCZ1fZQoaAZoCWgPQwhJgnAFaMy+QJSGlFKUaBVN6ANoFkdA4FbC9iMHbHV9lChoBmgJaA9DCPWDukjBuYVAlIaUUpRoFUt5aBZHQOBW/jOPeYV1fZQoaAZoCWgPQwhmbOhmqwy/QJSGlFKUaBVN6ANoFkdA4Fjf9+PRzHV9lChoBmgJaA9DCIlFDDtMCb5AlIaUUpRoFU3oA2gWR0DgWsY12q1gdX2UKGgGaAloD0MIp3nHKS6IukCUhpRSlGgVTWUDaBZHQOBcWndweeZ1fZQoaAZoCWgPQwj1nsppP+W9QJSGlFKUaBVN6ANoFkdA4F5ClDneSHV9lChoBmgJaA9DCGFxOPOrKoxAlIaUUpRoFUuSaBZHQOBeiOxyGSJ1fZQoaAZoCWgPQwheoQ+WYQW/QJSGlFKUaBVN6ANoFkdA4GBY/uCwr3V9lChoBmgJaA9DCHeGqS31WqVAlIaUUpRoFU11AWgWR0DgYPIaRZEEdX2UKGgGaAloD0MIWvROBQzTsECUhpRSlGgVTSoCaBZHQOBkYRfa6Bl1fZQoaAZoCWgPQwiV8e8zrgC/QJSGlFKUaBVN6ANoFkdA4GY/mCiAUnV9lChoBmgJaA9DCCgpsABCBr9AlIaUUpRoFU3oA2gWR0DgaDHflZHNdX2UKGgGaAloD0MI8nub/sQLv0CUhpRSlGgVTegDaBZHQOBqIgDmr811fZQoaAZoCWgPQwhRu18FwNC+QJSGlFKUaBVN6ANoFkdA4GwLHgpBonV9lChoBmgJaA9DCNtPxvjETLhAlIaUUpRoFU0yA2gWR0DgbZz+R5kcdX2UKGgGaAloD0MIBFlPrb6rrkCUhpRSlGgVTRUCaBZHQOBumgDzRQd1fZQoaAZoCWgPQwi1VN6OqNe+QJSGlFKUaBVN6ANoFkdA4HB+56D5CXV9lChoBmgJaA9DCEPnNXbtib5AlIaUUpRoFU3oA2gWR0DgcmWCMglodX2UKGgGaAloD0MICFirdvnrvkCUhpRSlGgVTegDaBZHQOB0UgcYIjZ1fZQoaAZoCWgPQwjjGMkepfS+QJSGlFKUaBVN6ANoFkdA4HYiHYg7o3V9lChoBmgJaA9DCHNJ1Xb/M7ZAlIaUUpRoFU3jAmgWR0Dged1xIatLdX2UKGgGaAloD0MIbypSYQj0vkCUhpRSlGgVTegDaBZHQOB7f6HO8kF1fZQoaAZoCWgPQwgFiljEsOO+QJSGlFKUaBVN6ANoFkdA4H1d11wHaHV9lChoBmgJaA9DCA8LtaYJ/L5AlIaUUpRoFU3oA2gWR0Dgf1AVLzwudX2UKGgGaAloD0MIuaerOxKOvkCUhpRSlGgVTegDaBZHQOCBQCoESuh1fZQoaAZoCWgPQwjuIkxRnmypQJSGlFKUaBVNtwFoFkdA4IIS8V58jXV9lChoBmgJaA9DCApNEkuGXb5AlIaUUpRoFU3oA2gWR0Dgg/1DAJswdX2UKGgGaAloD0MI1ub/VWPcvkCUhpRSlGgVTegDaBZHQOCF65Kaodd1fZQoaAZoCWgPQwiWJM/1OQe/QJSGlFKUaBVN6ANoFkdA4IfTVyFPBXV9lChoBmgJaA9DCDVB1H1cDb9AlIaUUpRoFU3oA2gWR0DgibJhYvFndX2UKGgGaAloD0MIY+/FF/HXskCUhpRSlGgVTZcCaBZHQOCK59lVcUx1fZQoaAZoCWgPQwiAuRYtyFW6QJSGlFKUaBVNZANoFkdA4I7o3dj5K3V9lChoBmgJaA9DCKuWdJQXzbVAlIaUUpRoFU3UAmgWR0DgkDHXjlxPdX2UKGgGaAloD0MIasGLvuqSvkCUhpRSlGgVTegDaBZHQOCR4Vqesgd1fZQoaAZoCWgPQwgNNnUeffKhQJSGlFKUaBVNMAFoFkdA4JJsfi5uqHV9lChoBmgJaA9DCMqK4eq0/b5AlIaUUpRoFU3oA2gWR0DglE4l1r6+dX2UKGgGaAloD0MIt9Jrs+lcvkCUhpRSlGgVTegDaBZHQOCWPd8Z1mt1fZQoaAZoCWgPQwgJMgIqbMG+QJSGlFKUaBVN6ANoFkdA4Jgn8C5mRXV9lChoBmgJaA9DCHFWRE1szb5AlIaUUpRoFU3oA2gWR0DgmhQV2Rq5dX2UKGgGaAloD0MIHNKowDncvkCUhpRSlGgVTegDaBZHQOCb/myZ8a51fZQoaAZoCWgPQwjVko5yUJStQJSGlFKUaBVNMAJoFkdA4J0KjhDPW3V9lChoBmgJaA9DCEZcABrd+75AlIaUUpRoFU3oA2gWR0Dgnu44hEBsdX2UKGgGaAloD0MIsHWpEdqiqkCUhpRSlGgVTdABaBZHQOCfxGgFotd1ZS4="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 1990000,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 256,
|
86 |
+
"learning_starts": 10000,
|
87 |
+
"tau": 0.005,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": 1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f634fbbeb90>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7f634fbbec20>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7f634f7257a0>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f634f725830>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc_data object at 0x7f634fc155d0>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"target_entropy": -17.0,
|
110 |
+
"ent_coef": "auto",
|
111 |
+
"target_update_interval": 1,
|
112 |
+
"top_quantiles_to_drop_per_net": 2,
|
113 |
+
"remove_time_limit_termination": false
|
114 |
+
}
|
tqc-Humanoid-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03df9b01a4219e8f34d22674525fbca4245be514153c0f0e6e9233554a651eed
|
3 |
+
size 1255
|
tqc-Humanoid-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f878afd668400fdf21d1002a97fc0ad25dbcdee8d77c483de2eabb8e68e9b609
|
3 |
+
size 3464325
|
tqc-Humanoid-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e011095b6f0f38d90120fef69b1a642ce1a5beb9d2e109e51d59c2ffee4db39
|
3 |
+
size 747
|
tqc-Humanoid-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29f73f2d2e3541513ddb6d7cfffc2cc48472214a378defd85652a5f7f7b100a4
|
3 |
+
size 200859
|