librarian-bot's picture
Librarian Bot: Add base_model information to model
446e606
|
raw
history blame
2.41 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - jnlpba
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: dmis-lab/biobert-base-cased-v1.2
model-index:
  - name: biobert-base-cased-v1.2-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: jnlpba
          type: jnlpba
          args: jnlpba
        metrics:
          - type: precision
            value: 0.7150627220423177
            name: Precision
          - type: recall
            value: 0.8300729927007299
            name: Recall
          - type: f1
            value: 0.7682875335686659
            name: F1
          - type: accuracy
            value: 0.90497239665345
            name: Accuracy

biobert-base-cased-v1.2-finetuned-ner

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the jnlpba dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3655
  • Precision: 0.7151
  • Recall: 0.8301
  • F1: 0.7683
  • Accuracy: 0.9050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.257 1.0 1160 0.2889 0.7091 0.8222 0.7615 0.9021
0.1962 2.0 2320 0.3009 0.7154 0.8259 0.7667 0.9048
0.158 3.0 3480 0.3214 0.7098 0.8228 0.7621 0.9031
0.131 4.0 4640 0.3385 0.7174 0.8292 0.7692 0.9055
0.1081 5.0 5800 0.3655 0.7151 0.8301 0.7683 0.9050

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.9.1+cu102
  • Datasets 1.13.2
  • Tokenizers 0.10.3